Mercurial > hg > Members > atton > delta_monad
changeset 74:1f4ea5cb153d
Prove monad-law-1
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 30 Nov 2014 23:05:42 +0900 |
parents | 0ad0ae7a3cbe |
children | a4eb68476766 |
files | agda/delta.agda |
diffstat | 1 files changed, 49 insertions(+), 19 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/delta.agda Sun Nov 30 22:26:50 2014 +0900 +++ b/agda/delta.agda Sun Nov 30 23:05:42 2014 +0900 @@ -188,25 +188,55 @@ bind (n-tail (S n) (delta d ds)) (n-tail (S m + S n)) ∎ -monad-law-1-4 : {l : Level} {A : Set l} -> (n : Int) -> (dd : Delta (Delta A)) -> - headDelta ((n-tail n) (bind dd tailDelta)) ≡ headDelta ((n-tail (S n)) (headDelta (n-tail n dd))) -monad-law-1-4 O (mono dd) = refl -monad-law-1-4 O (delta dd dd₁) = refl -monad-law-1-4 (S n) (mono dd) = begin - headDelta (n-tail (S n) (bind (mono dd) tailDelta)) ≡⟨ refl ⟩ - headDelta (n-tail (S n) (tailDelta dd)) ≡⟨ cong (\t -> headDelta (t dd)) (n-tail-plus (S n)) ⟩ - headDelta (n-tail (S (S n)) dd) ≡⟨ refl ⟩ - headDelta (n-tail (S (S n)) (headDelta (mono dd))) ≡⟨ cong (\de -> headDelta (n-tail (S (S n)) (headDelta de))) (sym (tail-delta-to-mono (S n) dd)) ⟩ - headDelta (n-tail (S (S n)) (headDelta (n-tail (S n) (mono dd)))) +monad-law-1-4 : {l : Level} {A : Set l} -> (m n : Int) -> (dd : Delta (Delta A)) -> + headDelta ((n-tail n) (bind dd (n-tail m))) ≡ headDelta ((n-tail (m + n)) (headDelta (n-tail n dd))) +monad-law-1-4 O O (mono dd) = refl +monad-law-1-4 O O (delta dd dd₁) = refl +monad-law-1-4 O (S n) (mono dd) = begin + headDelta (n-tail (S n) (bind (mono dd) (n-tail O))) ≡⟨ refl ⟩ + headDelta (n-tail (S n) dd) ≡⟨ refl ⟩ + headDelta (n-tail (S n) (headDelta (mono dd))) ≡⟨ cong (\de -> headDelta (n-tail (S n) (headDelta de))) (sym (tail-delta-to-mono (S n) dd)) ⟩ + headDelta (n-tail (S n) (headDelta (n-tail (S n) (mono dd)))) ≡⟨ refl ⟩ + headDelta (n-tail (O + S n) (headDelta (n-tail (S n) (mono dd)))) + ∎ +monad-law-1-4 O (S n) (delta d ds) = begin + headDelta (n-tail (S n) (bind (delta d ds) (n-tail O))) ≡⟨ refl ⟩ + headDelta (n-tail (S n) (bind (delta d ds) id)) ≡⟨ refl ⟩ + headDelta (n-tail (S n) (delta (headDelta d) (bind ds tailDelta))) ≡⟨ cong (\t -> headDelta (t (delta (headDelta d) (bind ds tailDelta)))) (sym (n-tail-plus n)) ⟩ + headDelta (((n-tail n) ∙ tailDelta) (delta (headDelta d) (bind ds tailDelta))) ≡⟨ refl ⟩ + headDelta (n-tail n (bind ds tailDelta)) ≡⟨ monad-law-1-4 (S O) n ds ⟩ + headDelta (n-tail (S n) (headDelta (n-tail n ds))) ≡⟨ refl ⟩ + headDelta (n-tail (S n) (headDelta (((n-tail n) ∙ tailDelta) (delta d ds)))) ≡⟨ cong (\t -> headDelta (n-tail (S n) (headDelta (t (delta d ds))))) (n-tail-plus n) ⟩ + headDelta (n-tail (S n) (headDelta (n-tail (S n) (delta d ds)))) ≡⟨ refl ⟩ + headDelta (n-tail (O + S n) (headDelta (n-tail (S n) (delta d ds)))) ∎ -monad-law-1-4 (S n) (delta d ds) = begin - headDelta (n-tail (S n) (bind (delta d ds) tailDelta)) ≡⟨ refl ⟩ - headDelta (n-tail (S n) (delta (headDelta (tailDelta d)) (bind ds (tailDelta ∙ tailDelta)))) ≡⟨ cong (\t -> headDelta (t (delta (headDelta (tailDelta d)) (bind ds (tailDelta ∙ tailDelta))))) (sym (n-tail-plus n)) ⟩ - headDelta (((n-tail n) ∙ tailDelta) (delta (headDelta (tailDelta d)) (bind ds (tailDelta ∙ tailDelta)))) ≡⟨ refl ⟩ - headDelta (n-tail n (bind ds (tailDelta ∙ tailDelta))) ≡⟨ {!!} ⟩ - headDelta (n-tail (S (S n)) (headDelta ((n-tail n ds)))) ≡⟨ refl ⟩ - headDelta (n-tail (S (S n)) (headDelta ((n-tail n ∙ tailDelta) (delta d ds)))) ≡⟨ cong (\t -> headDelta (n-tail (S (S n)) (headDelta (t (delta d ds))))) (n-tail-plus n) ⟩ - headDelta (n-tail (S (S n)) (headDelta (n-tail (S n) (delta d ds)))) +monad-law-1-4 (S m) n (mono dd) = begin + headDelta (n-tail n (bind (mono dd) (n-tail (S m)))) ≡⟨ refl ⟩ + headDelta (n-tail n ((n-tail (S m)) dd))≡⟨ cong (\t -> headDelta (t dd)) (n-tail-add n (S m)) ⟩ + headDelta (n-tail (n + S m) dd) ≡⟨ cong (\n -> headDelta ((n-tail n) dd)) (int-add-assoc n (S m)) ⟩ + headDelta (n-tail (S m + n) dd) ≡⟨ refl ⟩ + headDelta (n-tail (S m + n) (headDelta (mono dd))) ≡⟨ cong (\de -> headDelta (n-tail (S m + n) (headDelta de))) (sym (tail-delta-to-mono n dd)) ⟩ + headDelta (n-tail (S m + n) (headDelta (n-tail n (mono dd)))) + ∎ +monad-law-1-4 (S m) O (delta d ds) = begin + headDelta (n-tail O (bind (delta d ds) (n-tail (S m)))) ≡⟨ refl ⟩ + headDelta (bind (delta d ds) (n-tail (S m))) ≡⟨ refl ⟩ + headDelta (delta (headDelta ((n-tail (S m) d))) (bind ds (tailDelta ∙ (n-tail (S m))))) ≡⟨ refl ⟩ + headDelta (n-tail (S m) d) ≡⟨ cong (\n -> headDelta ((n-tail n) d)) (int-add-right-zero (S m)) ⟩ + headDelta (n-tail (S m + O) d) ≡⟨ refl ⟩ + headDelta (n-tail (S m + O) (headDelta (delta d ds))) ≡⟨ refl ⟩ + headDelta (n-tail (S m + O) (headDelta (n-tail O (delta d ds)))) + ∎ +monad-law-1-4 (S m) (S n) (delta d ds) = begin + headDelta (n-tail (S n) (bind (delta d ds) (n-tail (S m)))) ≡⟨ refl ⟩ + headDelta (n-tail (S n) (delta (headDelta ((n-tail (S m)) d)) (bind ds (tailDelta ∙ (n-tail (S m)))))) ≡⟨ cong (\t -> headDelta (t (delta (headDelta ((n-tail (S m)) d)) (bind ds (tailDelta ∙ (n-tail (S m))))))) (sym (n-tail-plus n)) ⟩ + headDelta ((((n-tail n) ∙ tailDelta) (delta (headDelta ((n-tail (S m)) d)) (bind ds (tailDelta ∙ (n-tail (S m))))))) ≡⟨ refl ⟩ + headDelta (n-tail n (bind ds (tailDelta ∙ (n-tail (S m))))) ≡⟨ refl ⟩ + headDelta (n-tail n (bind ds (n-tail (S (S m))))) ≡⟨ monad-law-1-4 (S (S m)) n ds ⟩ + headDelta (n-tail ((S (S m) + n)) (headDelta (n-tail n ds))) ≡⟨ cong (\nm -> headDelta ((n-tail nm) (headDelta (n-tail n ds)))) (sym (int-add-right m n)) ⟩ + headDelta (n-tail (S m + S n) (headDelta (n-tail n ds))) ≡⟨ refl ⟩ + headDelta (n-tail (S m + S n) (headDelta (((n-tail n) ∙ tailDelta) (delta d ds)))) ≡⟨ cong (\t -> headDelta (n-tail (S m + S n) (headDelta (t (delta d ds))))) (n-tail-plus n) ⟩ + headDelta (n-tail (S m + S n) (headDelta (n-tail (S n) (delta d ds)))) ∎ monad-law-1-2 : {l : Level} {A : Set l} -> (d : Delta (Delta A)) -> headDelta (mu d) ≡ (headDelta (headDelta d)) @@ -268,7 +298,7 @@ delta (headDelta (((n-tail n) ∙ tailDelta) (delta (headDelta d) (bind dd tailDelta)))) (bind (fmap mu ds) (tailDelta ∙ (n-tail (S n)))) ≡⟨ refl ⟩ delta (headDelta ((n-tail n) (bind dd tailDelta))) (bind (fmap mu ds) (tailDelta ∙ (n-tail (S n)))) ≡⟨ refl ⟩ delta (headDelta ((n-tail n) (bind dd tailDelta))) (bind (fmap mu ds) (n-tail (S (S n)))) ≡⟨ cong (\de -> delta (headDelta ((n-tail n) (bind dd tailDelta))) de) (monad-law-1-3 (S (S n)) ds) ⟩ - delta (headDelta ((n-tail n) (bind dd tailDelta))) (bind (bind ds (n-tail (S (S n)))) (n-tail (S (S n)))) ≡⟨ cong (\de -> delta de ( (bind (bind ds (n-tail (S (S n)))) (n-tail (S (S n)))))) (monad-law-1-4 n dd) ⟩ + delta (headDelta ((n-tail n) (bind dd tailDelta))) (bind (bind ds (n-tail (S (S n)))) (n-tail (S (S n)))) ≡⟨ cong (\de -> delta de ( (bind (bind ds (n-tail (S (S n)))) (n-tail (S (S n)))))) (monad-law-1-4 (S O) n dd) ⟩ delta (headDelta ((n-tail (S n)) (headDelta (n-tail n dd)))) (bind (bind ds (n-tail (S (S n)))) (n-tail (S (S n)))) ≡⟨ refl ⟩ delta (headDelta ((n-tail (S n)) (headDelta (n-tail n dd)))) (bind (bind ds (n-tail (S (S n)))) (tailDelta ∙ (n-tail (S n)))) ≡⟨ refl ⟩ delta (headDelta ((n-tail (S n)) (headDelta (n-tail n dd)))) (bind (bind ds (tailDelta ∙ (n-tail (S n)))) (tailDelta ∙ (n-tail (S n)))) ≡⟨ refl ⟩