Mercurial > hg > Members > atton > delta_monad
changeset 63:474ed34e4f02
proving monad-law-1 ...
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 25 Nov 2014 17:33:06 +0900 |
parents | 0f308ddd6136 |
children | 15eec529dfc4 |
files | agda/delta.agda |
diffstat | 1 files changed, 199 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/delta.agda Tue Nov 25 12:34:09 2014 +0900 +++ b/agda/delta.agda Tue Nov 25 17:33:06 2014 +0900 @@ -91,7 +91,7 @@ ≡⟨ refl ⟩ fmap f (deltaAppend (delta x d) dd) ∎ - +{- mu-head-delta : {l : Level} {A : Set l} -> (d : Delta (Delta A)) -> mu (headDelta d) ≡ headDelta (mu d) mu-head-delta (mono (mono x)) = refl @@ -120,7 +120,7 @@ ∎ mu-head-delta (mono (delta x (delta x₁ d))) = {!!} mu-head-delta (delta d dd) = {!!} - +-} -- Functor-laws -- Functor-law-1 : T(id) = id' @@ -136,11 +136,174 @@ functor-law-2 f g (delta x d) = cong (delta (f (g x))) (functor-law-2 f g d) -- Monad-laws (Category) -{- + +monad-law-1-4 : {l : Level} {A : Set l} -> (ds : Delta (Delta A)) -> + tailDelta (bind ds (tailDelta ∙ id)) ≡ bind (tailDelta ds) (tailDelta ∙ tailDelta) +monad-law-1-4 (mono ds) = refl +monad-law-1-4 (delta (mono x) ds₁) = refl +monad-law-1-4 (delta (delta x (mono x₁)) ds₁) = refl +monad-law-1-4 (delta (delta x (delta x₁ ds)) ds₁) = refl + +monad-law-1-3 : {l : Level} {A : Set l} -> (ds : Delta (Delta A)) -> + tailDelta (bind ds tailDelta) ≡ bind (tailDelta ds) (tailDelta ∙ tailDelta) +monad-law-1-3 (mono ds) = refl +monad-law-1-3 (delta (mono x) ds) = refl +monad-law-1-3 (delta (delta x (mono x₁)) ds) = refl +monad-law-1-3 (delta (delta x (delta x₁ d)) ds) = refl + +monad-law-1-sub-sub : {l : Level} {A : Set l} -> (d : Delta (Delta (Delta A))) -> + bind (fmap mu d) (tailDelta ∙ tailDelta) ≡ bind (bind d (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta) +monad-law-1-sub-sub (mono (mono d)) = refl +monad-law-1-sub-sub (mono (delta (mono x) ds)) = begin + bind (fmap mu (mono (delta (mono x) ds))) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + bind (mono (mu (delta (mono x) ds))) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + bind (mono (bind (delta (mono x) ds) id)) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + bind (mono (deltaAppend (headDelta (mono x)) (bind ds tailDelta))) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + bind (mono (deltaAppend (mono x) (bind ds tailDelta))) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + bind (mono (delta x (bind ds tailDelta))) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + (tailDelta ∙ tailDelta) (delta x (bind ds tailDelta)) + ≡⟨ refl ⟩ + tailDelta (bind ds tailDelta) + ≡⟨ monad-law-1-3 ds ⟩ -- ? + bind (tailDelta ds) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + bind ((tailDelta ∙ tailDelta) (delta (mono x) ds)) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + bind (bind (mono (delta (mono x) ds)) (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + bind (bind (headDelta (tailDelta (mono (delta (mono x) ds)))) (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + bind (bind (mono (delta (mono x) ds)) (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta) + ∎ +monad-law-1-sub-sub (mono (delta (delta x (mono x₁)) ds)) = begin + bind (fmap mu (mono (delta (delta x (mono x₁)) ds))) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + bind (mono (mu (delta (delta x (mono x₁)) ds))) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + (tailDelta ∙ tailDelta) (mu (delta (delta x (mono x₁)) ds)) + ≡⟨ refl ⟩ + (tailDelta ∙ tailDelta) (bind (delta (delta x (mono x₁)) ds) id) + ≡⟨ refl ⟩ + (tailDelta ∙ tailDelta) (deltaAppend (headDelta (delta x (mono x₁))) (bind ds (tailDelta ∙ id))) + ≡⟨ refl ⟩ + (tailDelta ∙ tailDelta) (deltaAppend (mono x) (bind ds (tailDelta ∙ id))) + ≡⟨ refl ⟩ + (tailDelta ∙ tailDelta) (delta x (bind ds (tailDelta ∙ id))) + ≡⟨ refl ⟩ + tailDelta (bind ds (tailDelta ∙ id)) + ≡⟨ monad-law-1-4 ds ⟩ + bind (tailDelta ds) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + bind ((tailDelta ∙ tailDelta) (delta (delta x (mono x₁)) ds)) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + bind (bind (mono (delta (delta x (mono x₁)) ds)) (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta) + ∎ +monad-law-1-sub-sub (mono (delta (delta x (delta xx d)) ds)) = begin + bind (fmap mu (mono (delta (delta x (delta xx d)) ds))) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + bind (mono (mu (delta (delta x (delta xx d)) ds))) (tailDelta ∙ tailDelta) + ≡⟨ refl ⟩ + (tailDelta ∙ tailDelta) (mu (delta (delta x (delta xx d)) ds)) + ≡⟨ {!!} ⟩ -- ? + bind (bind (mono (delta (delta x (delta xx d)) ds)) (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta) + ∎ +monad-law-1-sub-sub (delta d ds) = {!!} + + +monad-law-1-sub : {l : Level } {A : Set l} -> (x : Delta (Delta A)) -> (d : Delta (Delta (Delta A))) -> + deltaAppend (headDelta (mu x)) (bind (fmap mu d) tailDelta) ≡ mu (deltaAppend (headDelta x) (bind d tailDelta)) +monad-law-1-sub (mono (mono _)) (mono (mono _)) = refl +monad-law-1-sub (mono (mono _)) (mono (delta (mono _) _)) = refl +monad-law-1-sub (mono (mono _)) (mono (delta (delta _ _) _)) = refl +monad-law-1-sub (mono (mono x)) (delta (mono (mono xx)) d) = begin + deltaAppend (headDelta (mu (mono (mono x)))) (bind (fmap mu (delta (mono (mono xx)) d)) tailDelta) + ≡⟨ refl ⟩ + deltaAppend (headDelta (mu (mono (mono x)))) (bind (delta (mu (mono (mono xx))) (fmap mu d)) tailDelta) + ≡⟨ refl ⟩ + deltaAppend (headDelta (bind (mono (mono x)) id)) (bind (delta (mu (mono (mono xx))) (fmap mu d)) tailDelta) + ≡⟨ refl ⟩ + deltaAppend (headDelta (mono x)) (bind (delta (mu (mono (mono xx))) (fmap mu d)) tailDelta) + ≡⟨ refl ⟩ + deltaAppend (headDelta (mono x)) (bind (delta (mono xx) (fmap mu d)) tailDelta) + ≡⟨ refl ⟩ + deltaAppend (mono x) (bind (delta (mono xx) (fmap mu d)) tailDelta) + ≡⟨ refl ⟩ + deltaAppend (mono x) (bind (delta (mono xx) (fmap mu d)) tailDelta) + ≡⟨ refl ⟩ + deltaAppend (mono x) (deltaAppend (tailDelta (mono xx)) (bind (fmap mu d) (tailDelta ∙ tailDelta))) + ≡⟨ refl ⟩ + deltaAppend (mono x) (deltaAppend (mono xx) (bind (fmap mu d) (tailDelta ∙ tailDelta))) + ≡⟨ refl ⟩ + deltaAppend (mono x) (deltaAppend (mu (mono (mono xx))) (bind (fmap mu d) (tailDelta ∙ tailDelta))) + ≡⟨ refl ⟩ + deltaAppend (mono x) (deltaAppend (mono xx) (bind (fmap mu d) (tailDelta ∙ tailDelta))) + ≡⟨ refl ⟩ + delta x (deltaAppend (mono xx) (bind (fmap mu d) (tailDelta ∙ tailDelta))) + ≡⟨ refl ⟩ + delta x (delta xx (bind (fmap mu d) (tailDelta ∙ tailDelta))) + ≡⟨ cong (\d -> (delta x (delta xx d))) (monad-law-1-sub-sub d) ⟩ -- ??? + delta x (delta xx (bind (bind d (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta))) + ≡⟨ refl ⟩ + delta x ((deltaAppend (mono xx) (bind (bind d (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta)))) + ≡⟨ refl ⟩ + delta x ((deltaAppend (tailDelta (mono xx)) (bind (bind d (tailDelta ∙ tailDelta)) (tailDelta ∙ tailDelta)))) + ≡⟨ refl ⟩ + delta x (bind (delta (mono xx) (bind d (tailDelta ∙ tailDelta))) tailDelta) + ≡⟨ refl ⟩ + delta x (bind (deltaAppend (mono (mono xx)) (bind d (tailDelta ∙ tailDelta))) tailDelta) + ≡⟨ refl ⟩ + delta x (bind (deltaAppend (headDelta (tailDelta (mono (mono xx)))) (bind d (tailDelta ∙ tailDelta))) tailDelta) + ≡⟨ refl ⟩ + delta x (bind (bind (delta (mono (mono xx)) d) tailDelta) tailDelta) + ≡⟨ refl ⟩ + deltaAppend (mono x) (bind (bind (delta (mono (mono xx)) d) tailDelta) tailDelta) + ≡⟨ refl ⟩ + bind (delta (mono x) (bind (delta (mono (mono xx)) d) tailDelta)) id + ≡⟨ refl ⟩ + mu (delta (mono x) (bind (delta (mono (mono xx)) d) tailDelta)) + ≡⟨ refl ⟩ + mu (deltaAppend (mono (mono x)) (bind (delta (mono (mono xx)) d) tailDelta)) + ≡⟨ refl ⟩ + mu (deltaAppend (headDelta (mono (mono x))) (bind (delta (mono (mono xx)) d) tailDelta)) + ∎ +monad-law-1-sub (mono (mono x)) (delta (mono (delta x₁ d)) d₁) = {!!} +monad-law-1-sub (mono (mono x)) (delta (delta d d₁) d₂) = {!!} +monad-law-1-sub (mono (delta x x₁)) d = {!!} +monad-law-1-sub (delta x x₁) d = {!!} + -- monad-law-1 : join . fmap join = join . join monad-law-1 : {l : Level} {A : Set l} -> (d : Delta (Delta (Delta A))) -> ((mu ∙ (fmap mu)) d) ≡ ((mu ∙ mu) d) monad-law-1 (mono d) = refl +monad-law-1 (delta x d) = begin + (mu ∙ (fmap mu)) (delta x d) + ≡⟨ refl ⟩ + mu (fmap mu (delta x d)) + ≡⟨ refl ⟩ + mu (delta (mu x) (fmap mu d)) + ≡⟨ refl ⟩ + bind (delta (mu x) (fmap mu d)) id + ≡⟨ refl ⟩ + deltaAppend (headDelta (mu x)) (bind (fmap mu d) tailDelta) + ≡⟨ monad-law-1-sub x d ⟩ + mu (deltaAppend (headDelta x) (bind d tailDelta)) + ≡⟨ refl ⟩ + mu (bind (delta x d) id) + ≡⟨ refl ⟩ + mu (mu (delta x d)) + ≡⟨ refl ⟩ + (mu ∙ mu) (delta x d) + ∎ + +-- split d +{- monad-law-1 (delta x (mono d)) = begin + (mu ∙ fmap mu) (delta x (mono d)) ≡⟨ refl ⟩ mu (fmap mu (delta x (mono d))) @@ -152,12 +315,37 @@ deltaAppend (headDelta (mu x)) (bind (mono (mu d)) tailDelta) ≡⟨ refl ⟩ deltaAppend (headDelta (mu x)) (tailDelta (mu d)) - ≡⟨ cong (\de -> deltaAppend de (tailDelta (mu d))) (head-delta-natural-transformation {!!} {!!}) ⟩ - deltaAppend (mu (headDelta x)) (tailDelta (mu d)) ≡⟨ {!!} ⟩ + mu (deltaAppend (headDelta x) (tailDelta d)) + ≡⟨ refl ⟩ + mu (deltaAppend (headDelta x) (tailDelta (id d))) + ≡⟨ refl ⟩ + mu (deltaAppend (headDelta x) ((tailDelta ∙ id) d)) + ≡⟨ refl ⟩ + mu (deltaAppend (headDelta x) (bind (mono d) (tailDelta ∙ id))) + ≡⟨ refl ⟩ + mu (bind (delta x (mono d)) id) + ≡⟨ refl ⟩ + mu (mu (delta x (mono d))) + ≡⟨ refl ⟩ (mu ∙ mu) (delta x (mono d)) ∎ -monad-law-1 (delta x (delta d d₁)) = {!!} +monad-law-1 (delta x (delta d ds)) = begin + (mu ∙ fmap mu) (delta x (delta d ds)) + ≡⟨ refl ⟩ + mu (fmap mu (delta x (delta d ds))) + ≡⟨ refl ⟩ + mu (delta (mu x) (delta (mu d) (fmap mu ds))) + ≡⟨ refl ⟩ + bind (delta (mu x) (delta (mu d) (fmap mu ds))) id + ≡⟨ refl ⟩ + deltaAppend (headDelta (mu x)) (bind (delta (mu d) (fmap mu ds)) tailDelta) + ≡⟨ refl ⟩ + deltaAppend (headDelta (mu x)) (deltaAppend (headDelta (tailDelta (mu d))) (bind (fmap mu ds) (tailDelta ∙ tailDelta))) + + ≡⟨ {!!} ⟩ + (mu ∙ mu) (delta x (delta d ds)) + ∎ -} @@ -206,7 +394,7 @@ (mu ∙ mu) (delta x (mono d)) ∎ monad-law-1 (delta x (delta xx d)) = {!!} -{- + monad-law-1 (delta x d) = begin (mu ∙ fmap mu) (delta x d) ≡⟨ refl ⟩ @@ -222,10 +410,10 @@ ≡⟨ {!!} ⟩ (mu ∙ mu) (delta x d) ∎ --} --} + -{- + + -- monad-law-2-2 : join . return = id monad-law-2-2 : {l : Level} {A : Set l } -> (s : Delta A) -> (mu ∙ eta) s ≡ id s monad-law-2-2 (similar lx x ly y) = refl @@ -272,4 +460,4 @@ ≡⟨ {!!} ⟩ ((delta x d) >>= k) >>= h ∎ --} \ No newline at end of file +-}