Mercurial > hg > Members > atton > delta_monad
changeset 86:5c083ddd73ed
Add record definitions. functor, natural-transformation, monad.
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 18 Jan 2015 20:59:27 +0900 |
parents | a1723b3ea997 |
children | 6789c65a75bc |
files | agda/laws.agda |
diffstat | 1 files changed, 43 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/agda/laws.agda Sun Jan 18 20:59:27 2015 +0900 @@ -0,0 +1,43 @@ +open import Relation.Binary.PropositionalEquality +open import Level +open import basic + +module laws where + +record Functor {l : Level} (F : Set l -> Set l) : (Set (suc l)) where + field + fmap : ∀{A B} -> (A -> B) -> (F A) -> (F B) + field + preserve-id : ∀{A} (x : F A) → fmap id x ≡ id x + covariant : ∀{A B C} (f : A -> B) -> (g : B -> C) -> (x : F A) + -> fmap (g ∙ f) x ≡ fmap g (fmap f x) +open Functor + + + +record NaturalTransformation {l ll : Level} (F G : Set l -> Set l) + (functorF : Functor F) + (functorG : Functor G) : Set (suc (l ⊔ ll)) where + field + natural-transformation : {A : Set l} -> F A -> G A + field + commute : ∀ {A B} -> (f : A -> B) -> (x : F A) -> + natural-transformation (fmap functorF f x) ≡ fmap functorG f (natural-transformation x) +open NaturalTransformation + + + +-- simple Monad definition. without NaturalTransformation (mu, eta) and monad-law with f. +record Monad {l : Level} {A : Set l} + (M : {ll : Level} -> Set ll -> Set ll) + (functorM : Functor M) + : Set (suc l) where + field + mu : {A : Set l} -> M (M A) -> M A + eta : {A : Set l} -> A -> M A + field + association-law : (x : (M (M (M A)))) -> (mu ∙ (fmap functorM mu)) x ≡ (mu ∙ mu) x + left-unity-law : (x : M A) -> (mu ∙ (fmap functorM eta)) x ≡ id x + right-unity-law : (x : M A) -> id x ≡ (mu ∙ eta) x + +open Monad \ No newline at end of file