changeset 86:5c083ddd73ed

Add record definitions. functor, natural-transformation, monad.
author Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp>
date Sun, 18 Jan 2015 20:59:27 +0900
parents a1723b3ea997
children 6789c65a75bc
files agda/laws.agda
diffstat 1 files changed, 43 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/agda/laws.agda	Sun Jan 18 20:59:27 2015 +0900
@@ -0,0 +1,43 @@
+open import Relation.Binary.PropositionalEquality
+open import Level
+open import basic
+
+module laws where
+
+record Functor {l : Level} (F : Set l -> Set l) : (Set (suc l)) where
+  field
+    fmap : ∀{A B} -> (A -> B) -> (F A) -> (F B)
+  field
+    preserve-id : ∀{A} (x : F A) → fmap id x ≡ id x
+    covariant   : ∀{A B C} (f : A -> B) -> (g : B -> C) -> (x : F A)
+                    -> fmap (g ∙ f) x ≡ fmap g (fmap f x)
+open Functor
+
+
+
+record NaturalTransformation {l ll : Level} (F G : Set l -> Set l)
+                                            (functorF : Functor F)
+                                            (functorG : Functor G) : Set (suc (l ⊔ ll)) where
+  field
+    natural-transformation : {A : Set l}  -> F A -> G A
+  field
+    commute : ∀ {A B} -> (f : A -> B) -> (x : F A) ->
+              natural-transformation (fmap functorF f x) ≡  fmap functorG f (natural-transformation x)
+open NaturalTransformation
+
+
+
+-- simple Monad definition. without NaturalTransformation (mu, eta) and monad-law with f.
+record Monad {l : Level} {A : Set l}
+                         (M : {ll : Level} -> Set ll -> Set ll)
+                         (functorM : Functor M)
+                         : Set (suc l)  where
+  field
+    mu  : {A : Set l} -> M (M A) -> M A
+    eta : {A : Set l} -> A -> M A
+  field
+    association-law : (x : (M (M (M A)))) -> (mu ∙ (fmap functorM mu)) x ≡ (mu ∙ mu) x
+    left-unity-law  : (x : M A) -> (mu  ∙ (fmap functorM eta)) x ≡ id x
+    right-unity-law : (x : M A) -> id x ≡ (mu ∙ eta) x
+
+open Monad
\ No newline at end of file