Mercurial > hg > Members > atton > delta_monad
changeset 38:6ce83b2c9e59
Proof Functor-laws
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 19 Oct 2014 15:53:55 +0900 (2014-10-19) |
parents | 743c05b98dad |
children | b9b26b470cc2 |
files | agda/similar.agda |
diffstat | 1 files changed, 26 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/similar.agda Sun Oct 19 12:22:54 2014 +0900 +++ b/agda/similar.agda Sun Oct 19 15:53:55 2014 +0900 @@ -10,22 +10,46 @@ data Similar {l : Level} (A : Set l) : (Set (suc l)) where similar : List String -> A -> List String -> A -> Similar A + +-- Functor fmap : {l ll : Level} {A : Set l} {B : Set ll} -> (A -> B) -> (Similar A) -> (Similar B) fmap f (similar xs x ys y) = similar xs (f x) ys (f y) + +-- Monad mu : {l : Level} {A : Set l} -> Similar (Similar A) -> Similar A mu (similar lx (similar llx x _ _) ly (similar _ _ lly y)) = similar (lx ++ llx) x (ly ++ lly) y return : {l : Level} {A : Set l} -> A -> Similar A return x = similar [] x [] x -returnS : {A : Set} -> A -> Similar A +returnS : {l : Level} {A : Set l} -> A -> Similar A returnS x = similar [[ (show x) ]] x [[ (show x) ]] x -returnSS : {A : Set} -> A -> A -> Similar A +returnSS : {l : Level} {A : Set l} -> A -> A -> Similar A returnSS x y = similar [[ (show x) ]] x [[ (show y) ]] y + +-- proofs + + +-- Functor-laws + +-- Functor-law-1 : T(id) = id' +functor-law-1 : {l : Level} {A : Set l} -> (s : Similar A) -> (fmap id) s ≡ id s +functor-law-1 (similar lx x ly y) = refl + +-- Functor-law-2 : T(f . g) = T(f) . T(g) +functor-law-2 : {l ll lll : Level} {A : Set l} {B : Set ll} {C : Set lll} -> + (f : B -> C) -> (g : A -> B) -> (s : Similar A) -> + (fmap (f ∙ g)) s ≡ ((fmap f) ∙ (fmap g)) s +functor-law-2 f g (similar lx x ly y) = refl + + + +-- Monad-laws + --monad-law-1 : mu ∙ (fmap mu) ≡ mu ∙ mu monad-law-1 : {l : Level} {A : Set l} -> (s : Similar (Similar (Similar A))) -> ((mu ∙ (fmap mu)) s) ≡ ((mu ∙ mu) s) monad-law-1 (similar lx (similar llx (similar lllx x _ _) _ (similar _ _ _ _))