Mercurial > hg > Members > atton > delta_monad
changeset 75:a4eb68476766
Prove n-tail-add
author | Yasutaka Higa <e115763@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 01 Dec 2014 11:42:32 +0900 |
parents | 1f4ea5cb153d |
children | c7076f9bbaed |
files | agda/delta.agda |
diffstat | 1 files changed, 27 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/agda/delta.agda Sun Nov 30 23:05:42 2014 +0900 +++ b/agda/delta.agda Mon Dec 01 11:42:32 2014 +0900 @@ -80,7 +80,6 @@ -- Monad-laws (Category) - data Int : Set where O : Int S : Int -> Int @@ -88,43 +87,49 @@ _+_ : Int -> Int -> Int O + n = n (S m) + n = S (m + n) - -n-tail : {l : Level} {A : Set l} -> Int -> ((Delta A) -> (Delta A)) -n-tail O = id -n-tail (S n) = tailDelta ∙ (n-tail n) - -flip : {l : Level} {A : Set l} -> (f : A -> A) -> f ∙ (f ∙ f) ≡ (f ∙ f) ∙ f -flip f = refl - -n-tail-plus : {l : Level} {A : Set l} -> (n : Int) -> ((n-tail {l} {A} n) ∙ tailDelta) ≡ n-tail (S n) -n-tail-plus O = refl -n-tail-plus (S n) = begin - n-tail (S n) ∙ tailDelta ≡⟨ refl ⟩ - (tailDelta ∙ (n-tail n)) ∙ tailDelta ≡⟨ refl ⟩ - tailDelta ∙ ((n-tail n) ∙ tailDelta) ≡⟨ cong (\t -> tailDelta ∙ t) (n-tail-plus n) ⟩ - n-tail (S (S n)) - ∎ - -postulate n-tail-add : {l : Level} {A : Set l} -> (n m : Int) -> (n-tail {l} {A} n) ∙ (n-tail m) ≡ n-tail (n + m) postulate int-add-assoc : (n m : Int) -> n + m ≡ m + n postulate int-add-right-zero : (n : Int) -> n ≡ n + O postulate int-add-right : (n m : Int) -> S n + S m ≡ S (S (n + m)) +n-tail : {l : Level} {A : Set l} -> Int -> ((Delta A) -> (Delta A)) +n-tail O = id +n-tail (S n) = tailDelta ∙ (n-tail n) +n-tail-plus : {l : Level} {A : Set l} -> (n : Int) -> ((n-tail {l} {A} n) ∙ tailDelta) ≡ n-tail (S n) +n-tail-plus O = refl +n-tail-plus (S n) = begin + n-tail (S n) ∙ tailDelta ≡⟨ refl ⟩ + (tailDelta ∙ (n-tail n)) ∙ tailDelta ≡⟨ refl ⟩ + tailDelta ∙ ((n-tail n) ∙ tailDelta) ≡⟨ cong (\t -> tailDelta ∙ t) (n-tail-plus n) ⟩ + n-tail (S (S n)) + ∎ +n-tail-add : {l : Level} {A : Set l} {d : Delta A} -> (n m : Int) -> (n-tail {l} {A} n) ∙ (n-tail m) ≡ n-tail (n + m) +n-tail-add O m = refl +n-tail-add (S n) O = begin + n-tail (S n) ∙ n-tail O ≡⟨ refl ⟩ + n-tail (S n) ≡⟨ cong (\n -> n-tail n) (int-add-right-zero (S n))⟩ + n-tail (S n + O) + ∎ +n-tail-add {l} {A} {d} (S n) (S m) = begin + n-tail (S n) ∙ n-tail (S m) ≡⟨ refl ⟩ + (tailDelta ∙ (n-tail n)) ∙ n-tail (S m) ≡⟨ refl ⟩ + tailDelta ∙ ((n-tail n) ∙ n-tail (S m)) ≡⟨ cong (\t -> tailDelta ∙ t) (n-tail-add {l} {A} {d} n (S m)) ⟩ + tailDelta ∙ (n-tail (n + (S m))) ≡⟨ refl ⟩ + n-tail (S (n + S m)) ≡⟨ refl ⟩ + n-tail (S n + S m) ∎ tail-delta-to-mono : {l : Level} {A : Set l} -> (n : Int) -> (x : A) -> (n-tail n) (mono x) ≡ (mono x) tail-delta-to-mono O x = refl -tail-delta-to-mono (S n) x = begin +tail-delta-to-mono (S n) x = begin n-tail (S n) (mono x) ≡⟨ refl ⟩ tailDelta (n-tail n (mono x)) ≡⟨ refl ⟩ tailDelta (n-tail n (mono x)) ≡⟨ cong (\t -> tailDelta t) (tail-delta-to-mono n x) ⟩ tailDelta (mono x) ≡⟨ refl ⟩ - mono x - ∎ + mono x ∎ monad-law-1-5 : {l : Level} {A : Set l} -> (m : Int) (n : Int) -> (ds : Delta (Delta A)) -> n-tail n (bind ds (n-tail m)) ≡ bind (n-tail n ds) (n-tail (m + n))