Mercurial > hg > Members > kono > Proof > HyperReal
comparison src/HyperReal.agda @ 22:942f4e528a79 default tip
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 09 Jul 2021 11:11:10 +0900 |
parents | 5e4b38745a39 |
children |
comparison
equal
deleted
inserted
replaced
21:5e4b38745a39 | 22:942f4e528a79 |
---|---|
186 HRzero (hr i j nz ) = HZzero i | 186 HRzero (hr i j nz ) = HZzero i |
187 | 187 |
188 R0 : HyperR | 188 R0 : HyperR |
189 R0 = hr (hZ 0 0) (h 1) {!!} | 189 R0 = hr (hZ 0 0) (h 1) {!!} |
190 | 190 |
191 R1 : HyperR | |
192 R1 = hr (hZ 1 0) (h 1) {!!} | |
193 | |
191 record Rational : Set where | 194 record Rational : Set where |
192 field | 195 field |
193 rp rm k : ℕ | 196 rp rm k : ℕ |
194 0<k : 0 < k | 197 0<k : 0 < k |
195 | 198 |
196 hR : ℕ → ℕ → (k : HyperNat ) → ((i : ℕ) → 0 < k i) → HyperR | 199 hR : ℕ → ℕ → (k : HyperNat ) → ((i : ℕ) → 0 < k i) → HyperR |
197 hR x y k ne = hr (hZ x y) k ne | 200 hR x y k ne = hr (hZ x y) k ne |
198 | 201 |
199 rH : (r : Rational ) → HyperR | 202 rH : (r : Rational ) → HyperR |
200 rH r = hr (hZ (Rational.rp r) (Rational.rm r)) (h (Rational.k r)) {!!} | 203 rH r = hr (hZ (Rational.rp r) (Rational.rm r)) (h (Rational.k r)) {!!} |
204 | |
205 nH : (r : ℕ ) → HyperR | |
206 nH r = hr (hZ r 0) (h 1) {!!} | |
201 | 207 |
202 -- | 208 -- |
203 -- z0 / y0 = z1 / y1 ← z0 * y1 = z1 * y0 | 209 -- z0 / y0 = z1 / y1 ← z0 * y1 = z1 * y0 |
204 -- | 210 -- |
205 _h=_ : (i j : HyperR ) → Set | 211 _h=_ : (i j : HyperR ) → Set |
254 record Standard : Set where | 260 record Standard : Set where |
255 field | 261 field |
256 standard : HyperR → HyperR | 262 standard : HyperR → HyperR |
257 is-standard : {x : HyperR } → x ≈ standard x | 263 is-standard : {x : HyperR } → x ≈ standard x |
258 standard-unique : {x y : HyperR } → x ≈ y → standard x ≡ standard y | 264 standard-unique : {x y : HyperR } → x ≈ y → standard x ≡ standard y |
259 st-inifinitesimal : {x : HyperR } → inifinitesimal-R x → st x ≡ R0 | 265 st-inifinitesimal : {x : HyperR } → inifinitesimal-R x → standard x ≡ R0 |
266 st-ℕ : {x : HyperR } → { i : ℕ } → x ≈ nH i → standard x ≡ nH i | |
260 | 267 |
261 postulate | 268 postulate |
262 ST : Standard | 269 ST : Standard |
263 | 270 |
264 open Standard | 271 open Standard |
265 | 272 |
266 st : HyperR → HyperR | 273 st : HyperR → HyperR |
267 st x = standard ST x | 274 st x = standard ST x |
268 | 275 |
269 | 276 open import Algebra.Structures |
270 | 277 open import Algebra.Bundles |
278 | |
279 HRing : CommutativeRing Level.zero Level.zero | |
280 HRing = record { | |
281 Carrier = HyperR | |
282 ; _≈_ = _h=_ | |
283 ; _+_ = _h+_ | |
284 ; _*_ = _h*_ | |
285 ; -_ = -h | |
286 ; 0# = R0 | |
287 ; 1# = R1 | |
288 ; isCommutativeRing = {!!} | |
289 } | |
290 | |
291 | |
292 transfer : ( p : Rational ∨ HyperR → Set ) | |
293 → ((x : Rational ) → p (case1 x) ) | |
294 → ((x : HyperR ) → p (case2 x)) | |
295 transfer = {!!} |