Mercurial > hg > Members > kono > Proof > HyperReal
diff src/HyperReal.agda @ 22:942f4e528a79 default tip
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 09 Jul 2021 11:11:10 +0900 |
parents | 5e4b38745a39 |
children |
line wrap: on
line diff
--- a/src/HyperReal.agda Fri Jul 09 08:08:39 2021 +0900 +++ b/src/HyperReal.agda Fri Jul 09 11:11:10 2021 +0900 @@ -188,6 +188,9 @@ R0 : HyperR R0 = hr (hZ 0 0) (h 1) {!!} +R1 : HyperR +R1 = hr (hZ 1 0) (h 1) {!!} + record Rational : Set where field rp rm k : ℕ @@ -199,6 +202,9 @@ rH : (r : Rational ) → HyperR rH r = hr (hZ (Rational.rp r) (Rational.rm r)) (h (Rational.k r)) {!!} +nH : (r : ℕ ) → HyperR +nH r = hr (hZ r 0) (h 1) {!!} + -- -- z0 / y0 = z1 / y1 ← z0 * y1 = z1 * y0 -- @@ -256,7 +262,8 @@ standard : HyperR → HyperR is-standard : {x : HyperR } → x ≈ standard x standard-unique : {x y : HyperR } → x ≈ y → standard x ≡ standard y - st-inifinitesimal : {x : HyperR } → inifinitesimal-R x → st x ≡ R0 + st-inifinitesimal : {x : HyperR } → inifinitesimal-R x → standard x ≡ R0 + st-ℕ : {x : HyperR } → { i : ℕ } → x ≈ nH i → standard x ≡ nH i postulate ST : Standard @@ -266,5 +273,23 @@ st : HyperR → HyperR st x = standard ST x +open import Algebra.Structures +open import Algebra.Bundles + +HRing : CommutativeRing Level.zero Level.zero +HRing = record { + Carrier = HyperR + ; _≈_ = _h=_ + ; _+_ = _h+_ + ; _*_ = _h*_ + ; -_ = -h + ; 0# = R0 + ; 1# = R1 + ; isCommutativeRing = {!!} + } +transfer : ( p : Rational ∨ HyperR → Set ) + → ((x : Rational ) → p (case1 x) ) + → ((x : HyperR ) → p (case2 x)) +transfer = {!!}