Mercurial > hg > Members > kono > Proof > HyperReal
changeset 6:b7c2a67befdf
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 03 Jul 2021 10:46:55 +0900 |
parents | ebc18df12f5a |
children | a9fc3ece852a |
files | src/HyperReal.agda |
diffstat | 1 files changed, 26 insertions(+), 34 deletions(-) [+] |
line wrap: on
line diff
--- a/src/HyperReal.agda Fri Jul 02 22:58:09 2021 +0900 +++ b/src/HyperReal.agda Sat Jul 03 10:46:55 2021 +0900 @@ -32,33 +32,12 @@ open _∧_ - -- t1 : nxn→n 0 1 ≡ 1 - -- t1 = refl - -- t2 : nxn→n 1 0 ≡ 2 - -- t2 = refl - -- t3 : nxn→n 0 2 ≡ 3 - -- t3 = refl - -- t4 : nxn→n 1 1 ≡ 4 - -- t4 = refl - -- t5 : nxn→n 2 0 ≡ 5 - -- t5 = refl - -- t6 : nxn→n 0 3 ≡ 6 - -- t6 = refl - -- t7 : nxn→n 1 2 ≡ 7 - -- t7 = refl - -- t8 : nxn→n 2 1 ≡ 8 - -- t8 = refl - -- t9 : nxn→n 3 0 ≡ 9 - -- t9 = refl - -- t10 : nxn→n 0 4 ≡ 10 - -- t10 = refl - nxn : NxN nxn = record { nxn→n = λ p → nxn→n (proj1 p) (proj2 p) ; n→nxn = n→nxn - ; nn-id = {!!} - ; n-id = {!!} + ; nn-id = nn-id + ; n-id = n-id } where nxn→n : ℕ → ℕ → ℕ nxn→n zero zero = zero @@ -70,18 +49,31 @@ n→nxn (suc i) with n→nxn i ... | ⟪ x , zero ⟫ = ⟪ zero , suc x ⟫ ... | ⟪ x , suc y ⟫ = ⟪ suc x , y ⟫ + nid1 : (i : ℕ) → 0 < proj2 ( n→nxn i) → n→nxn (suc i) ≡ ⟪ suc (proj1 ( n→nxn i )) , pred ( proj2 ( n→nxn i )) ⟫ + nid1 (suc i) 0<p2 with n→nxn (suc i) | inspect n→nxn (suc i) + ... | ⟪ x , zero ⟫ | record { eq = eq } = {!!} + ... | ⟪ x , suc y ⟫ | record { eq = eq } = refl + nid2 : (i j : ℕ) → suc (nxn→n i (suc j)) ≡ nxn→n (suc i) j + nid2 zero zero = refl + nid2 zero (suc j) = refl + nid2 (suc i) zero = {!!} + nid2 (suc i) (suc j) = {!!} + n-id : (i : ℕ) → nxn→n (proj1 (n→nxn i)) (proj2 (n→nxn i)) ≡ i + n-id 0 = refl + n-id (suc i) with proj2 (n→nxn (suc i)) + ... | zero = {!!} + ... | suc x = begin + nxn→n (proj1 (n→nxn (suc i))) (suc x) ≡⟨ {!!} ⟩ + nxn→n (proj1 (n→nxn i)) (suc x) ≡⟨ {!!} ⟩ + nxn→n (proj1 (n→nxn i)) (proj2 (n→nxn i)) ≡⟨ {!!} ⟩ + i ≡⟨ {!!} ⟩ + suc i ∎ where open ≡-Reasoning + f : (i : ℕ) → Set + f i = n→nxn (suc i) ≡ ⟪ suc (proj1 ( n→nxn i )) , pred ( proj2 ( n→nxn i )) ⟫ + g : (i j : ℕ) → Set + g i j = suc (nxn→n i (suc j)) ≡ nxn→n (suc i) j nn-id : (i j : ℕ) → n→nxn (nxn→n i j) ≡ ⟪ i , j ⟫ - nn-id zero zero = refl - nn-id zero (suc j) with n→nxn (j + (nxn→n 0 j)) - ... | ⟪ x , zero ⟫ = {!!} - ... | ⟪ x , suc y ⟫ = {!!} - --= begin - -- n→nxn (nxn→n zero (suc j)) ≡⟨ refl ⟩ -- n→nxn (nxn→n zero j) ≡ ⟪ zero , j ⟫ : nn-id zero j - -- n→nxn (j + suc (nxn→n 0 j)) ≡⟨ {!!} ⟩ - -- n→nxn (suc (j + (nxn→n 0 j))) ≡⟨ {!!} ⟩ - -- {!!} ≡⟨ {!!} ⟩ - -- ⟪ zero , suc j ⟫ ∎ where open ≡-Reasoning - nn-id (suc i) j = {!!} + nn-id = {!!} open NxN