annotate zf-in-agda.html @ 1324:1eefc6600354

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 11 Jun 2023 18:49:13 +0900
parents f7d66c84bc26
children
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1 <html>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=UTF-8">
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 <head>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4 <STYLE type="text/css">
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 .main { width:100%; }
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 .side { top:0px; width:0%; position:fixed; left:80%; display:none}
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7 </STYLE>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 <script type="text/javascript">
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 function showElement(layer){
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10 var myLayer = document.getElementById(layer);
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 var main = document.getElementById('mmm');
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 if(myLayer.style.display=="none"){
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13 myLayer.style.width="20%";
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14 main.style.width="80%";
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
15 myLayer.style.display="block";
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16 myLayer.backgroundPosition="top";
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
17 } else {
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18 myLayer.style.width="0%";
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19 main.style.width="100%";
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20 myLayer.style.display="none";
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21 }
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
22 }
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
23 </script>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
24 <title>Constructing ZF Set Theory in Agda </title>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25 </head>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
26 <body>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
27 <div class="main" id="mmm">
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
28 <h1>Constructing ZF Set Theory in Agda </h1>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
29 <a href="#" right="0px" onclick="javascript:showElement('menu')">
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
30 <span>Menu</span>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
31 </a>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
32 <a href="#" left="0px" onclick="javascript:showElement('menu')">
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
33 <span>Menu</span>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
34 </a>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
35
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
36 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
37
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
38 <author> Shinji KONO</author>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
39
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
40 <hr/>
279
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
41 <h2><a name="content000">ZF in Agda</a></h2>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
42
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
43 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
44 zf.agda axiom of ZF
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
45 zfc.agda axiom of choice
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
46 Ordinals.agda axiom of Ordinals
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
47 ordinal.agda countable model of Ordinals
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
48 OD.agda model of ZF based on Ordinal Definable Set with assumptions
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
49 ODC.agda Law of exclude middle from axiom of choice assumptions
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
50 LEMC.agda model of choice with assumption of the Law of exclude middle
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
51 OPair.agda ordered pair on OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
52 BAlgbra.agda Boolean algebra on OD (not yet done)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
53 filter.agda Filter on OD (not yet done)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
54 cardinal.agda Caedinal number on OD (not yet done)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
55 logic.agda some basics on logic
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
56 nat.agda some basics on Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
57
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
58 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
59
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
60 <hr/>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
61 <h2><a name="content001">Programming Mathematics</a></h2>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
62
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
63 <p>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
64 Programming is processing data structure with λ terms.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
65 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
66 We are going to handle Mathematics in intuitionistic logic with λ terms.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
67 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
68 Mathematics is a functional programming which values are proofs.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
69 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
70 Programming ZF Set Theory in Agda
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
71 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
72
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
73 <hr/>
279
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
74 <h2><a name="content002">Target</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
75
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
76 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
77 Describe ZF axioms in Agda
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
78 Construction a Model of ZF Set Theory in Agda
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
79 Show necessary assumptions for the model
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
80 Show validities of ZF axioms on the model
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
81
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
82 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
83 This shows consistency of Set Theory (with some assumptions),
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
84 without circulating ZF Theory assumption.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
85 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
86 <a href="https://github.com/shinji-kono/zf-in-agda">
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
87 ZF in Agda https://github.com/shinji-kono/zf-in-agda
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
88 </a>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
89 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
90
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
91 <hr/>
279
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
92 <h2><a name="content003">Why Set Theory</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
93 If we can formulate Set theory, it suppose to work on any mathematical theory.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
94 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
95 Set Theory is a difficult point for beginners especially axiom of choice.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
96 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
97 It has some amount of difficulty and self circulating discussion.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
98 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
99 I'm planning to do it in my old age, but I'm enough age now.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
100 <p>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
101 if you familier with Agda, you can skip to <a href="#set-theory">
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
102 there
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
103 </a>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
104 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
105
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
106 <hr/>
279
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
107 <h2><a name="content004">Agda and Intuitionistic Logic </a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
108 Curry Howard Isomorphism
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
109 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
110
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
111 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
112 Proposition : Proof ⇔ Type : Value
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
113
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
114 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
115 which means
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
116 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
117   constructing a typed lambda calculus which corresponds a logic
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
118 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
119 Typed lambda calculus which allows complex type as a value of a variable (System FC)
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
120 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
121   First class Type / Dependent Type
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
122 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
123 Agda is a such a programming language which has similar syntax of Haskell
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
124 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
125 Coq is specialized in proof assistance such as command and tactics .
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
126 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
127
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
128 <hr/>
279
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
129 <h2><a name="content005">Introduction of Agda </a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
130 A length of a list of type A.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
131 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
132
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
133 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
134 length : {A : Set } → List A → Nat
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
135 length [] = zero
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
136 length (_ ∷ t) = suc ( length t )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
137
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
138 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
139 Simple functional programming language. Type declaration is mandatory.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
140 A colon means type, an equal means value. Indentation based.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
141 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
142 Set is a base type (which may have a level ).
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
143 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
144 {} means implicit variable which can be omitted if Agda infers its value.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
145 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
146
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
147 <hr/>
279
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
148 <h2><a name="content006">data ( Sum type )</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
149 A data type which as exclusive multiple constructors. A similar one as
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
150 union in C or case class in Scala.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
151 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
152 It has a similar syntax as Haskell but it has a slight difference.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
153 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
154
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
155 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
156 data List (A : Set ) : Set where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
157 [] : List A
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
158 _∷_ : A → List A → List A
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
159
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
160 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
161 _∷_ means infix operator. If use explicit _, it can be used in a normal function
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
162 syntax.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
163 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
164 Natural number can be defined as a usual way.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
165 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
166
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
167 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
168 data Nat : Set where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
169 zero : Nat
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
170 suc : Nat → Nat
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
171
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
172 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
173
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
174 <hr/>
279
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
175 <h2><a name="content007"> A → B means "A implies B"</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
176
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
177 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
178 In Agda, a type can be a value of a variable, which is usually called dependent type.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
179 Type has a name Set in Agda.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
180 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
181
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
182 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
183 ex3 : {A B : Set} → Set
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
184 ex3 {A}{B} = A → B
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
185
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
186 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
187 ex3 is a type : A → B, which is a value of Set. It also means a formula : A implies B.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
188 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
189
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
190 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
191 A type is a formula, the value is the proof
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
192
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
193 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
194 A value of A → B can be interpreted as an inference from the formula A to the formula B, which
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
195 can be a function from a proof of A to a proof of B.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
196 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
197
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
198 <hr/>
279
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
199 <h2><a name="content008">introduction と elimination</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
200 For a logical operator, there are two types of inference, an introduction and an elimination.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
201 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
202
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
203 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
204 intro creating symbol / constructor / introduction
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
205 elim using symbolic / accessors / elimination
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
206
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
207 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
208 In Natural deduction, this can be written in proof schema.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
209 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
210
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
211 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
212 A
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
213 :
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
214 B A A → B
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
215 ------------- →intro ------------------ →elim
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
216 A → B B
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
217
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
218 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
219 In Agda, this is a pair of type and value as follows. Introduction of → uses λ.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
220 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
221
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
222 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
223 →intro : {A B : Set } → A → B → ( A → B )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
224 →intro _ b = λ x → b
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
225 →elim : {A B : Set } → A → ( A → B ) → B
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
226 →elim a f = f a
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
227
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
228 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
229 Important
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
230 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
231
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
232 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
233 {A B : Set } → A → B → ( A → B )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
234
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
235 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
236 is
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
237 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
238
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
239 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
240 {A B : Set } → ( A → ( B → ( A → B ) ))
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
241
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
242 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
243 This makes currying of function easy.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
244 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
245
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
246 <hr/>
279
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
247 <h2><a name="content009"> To prove A → B </a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
248 Make a left type as an argument. (intros in Coq)
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
249 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
250
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
251 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
252 ex5 : {A B C : Set } → A → B → C → ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
253 ex5 a b c = ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
254
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
255 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
256 ? is called a hole, which is unspecified part. Agda tell us which kind type is required for the Hole.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
257 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
258 We are going to fill the holes, and if we have no warnings nor errors such as type conflict (Red),
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
259 insufficient proof or instance (Yellow), Non-termination, the proof is completed.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
260 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
261
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
262 <hr/>
279
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
263 <h2><a name="content010"> A ∧ B</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
264 Well known conjunction's introduction and elimination is as follow.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
265 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
266
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
267 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
268 A B A ∧ B A ∧ B
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
269 ------------- ----------- proj1 ---------- proj2
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
270 A ∧ B A B
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
271
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
272 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
273 We can introduce a corresponding structure in our functional programming language.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
274 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
275
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
276 <hr/>
279
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
277 <h2><a name="content011"> record</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
278
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
279 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
280 record _∧_ A B : Set
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
281 field
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
282 proj1 : A
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
283 proj2 : B
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
284
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
285 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
286 _∧_ means infix operator. _∧_ A B can be written as A ∧ B (Haskell uses (∧) )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
287 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
288 This a type which constructed from type A and type B. You may think this as an object
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
289 or struct.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
290 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
291
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
292 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
293 record { proj1 = x ; proj2 = y }
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
294
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
295 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
296 is a constructor of _∧_.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
297 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
298
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
299 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
300 ex3 : {A B : Set} → A → B → ( A ∧ B )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
301 ex3 a b = record { proj1 = a ; proj2 = b }
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
302 ex1 : {A B : Set} → ( A ∧ B ) → A
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
303 ex1 a∧b = proj1 a∧b
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
304
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
305 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
306 a∧b is a variable name. If we have no spaces in a string, it is a word even if we have symbols
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
307 except parenthesis or colons. A symbol requires space separation such as a type defining colon.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
308 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
309 Defining record can be recursively, but we don't use the recursion here.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
310 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
311
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
312 <hr/>
279
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
313 <h2><a name="content012"> Mathematical structure</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
314 We have types of elements and the relationship in a mathematical structure.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
315 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
316
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
317 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
318 logical relation has no ordering
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
319 there is a natural ordering in arguments and a value in a function
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
320
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
321 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
322 So we have typical definition style of mathematical structure with records.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
323 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
324
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
325 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
326 record IsOrdinals {n : Level} (ord : Set n)
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
327 (_o&lt;_ : ord → ord → Set n) : Set (suc (suc n)) where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
328 field
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
329 Otrans : {x y z : ord } → x o&lt; y → y o&lt; z → x o&lt; z
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
330 record Ordinals {n : Level} : Set (suc (suc n)) where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
331 field
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
332 ord : Set n
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
333 _o&lt;_ : ord → ord → Set n
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
334 isOrdinal : IsOrdinals ord _o&lt;_
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
335
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
336 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
337 In IsOrdinals, axioms are written in flat way. In Ordinal, we may have
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
338 inputs and outputs are put in the field including IsOrdinal.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
339 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
340 Fields of Ordinal is existential objects in the mathematical structure.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
341 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
342
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
343 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
344 <h2><a name="content013"> Limit Ordinal</a></h2>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
345 If an ordinal is not a succesor of other, it is called limit ordinal. We need predicate to decide it.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
346 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
347
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
348 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
349 not-limit-p : ( x : ord ) → Dec ( ¬ ((y : ord) → ¬ (x ≡ osuc y) ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
350
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
351 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
352 An ordinal may have an imeditate limit ordinal, we call it next x. Axiom of nrext is this.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
353 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
354
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
355 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
356 record IsNext {n : Level } (ord : Set n) (o∅ : ord ) (osuc : ord → ord )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
357 (_o&lt;_ : ord → ord → Set n) (next : ord → ord ) : Set (suc (suc n)) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
358 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
359 x&lt;nx : { y : ord } → (y o&lt; next y )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
360 osuc&lt;nx : { x y : ord } → x o&lt; next y → osuc x o&lt; next y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
361 ¬nx&lt;nx : {x y : ord} → y o&lt; x → x o&lt; next y → ¬ ((z : ord) → ¬ (x ≡ osuc z))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
362
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
363 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
364 We show some intresting lemma.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
365 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
366
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
367 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
368 next&lt; : {x y z : Ordinal} → x o&lt; next z → y o&lt; next x → y o&lt; next z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
369 nexto=n : {x y : Ordinal} → x o&lt; next (osuc y) → x o&lt; next y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
370 nexto≡ : {x : Ordinal} → next x ≡ next (osuc x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
371 next-is-limit : {x y : Ordinal} → ¬ (next x ≡ osuc y)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
372
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
373 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
374 These are proved from the axiom. Our countable ordinal satisfies these.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
375 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
376
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
377 <hr/>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
378 <h2><a name="content014"> A Model and a theory</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
379 Agda record is a type, so we can write it in the argument, but is it really exists?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
380 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
381 If we have a value of the record, it simply exists, that is, we need to create all the existence
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
382 in the record satisfies all the axioms (= field of IsOrdinal) should be valid.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
383 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
384
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
385 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
386 type of record = theory
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
387 value of record = model
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
388
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
389 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
390 We call the value of the record as a model. If mathematical structure has a
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
391 model, it exists. Pretty Obvious.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
392 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
393
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
394 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
395 <h2><a name="content015"> postulate と module</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
396 Agda proofs are separated by modules, which are large records.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
397 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
398 postulates are assumptions. We can assume a type without proofs.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
399 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
400
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
401 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
402 postulate
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
403 sup-o : ( Ordinal → Ordinal ) → Ordinal
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
404 sup-o&lt; : { ψ : Ordinal → Ordinal } → ∀ {x : Ordinal } → ψ x o&lt; sup-o ψ
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
405
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
406 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
407 sup-o is an example of upper bound of a function and sup-o&lt; assumes it actually satisfies all the value is less than upper bound.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
408 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
409 Writing some type in a module argument is the same as postulating a type, but
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
410 postulate can be written the middle of a proof.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
411 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
412 postulate can be constructive.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
413 <p>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
414 postulate can be inconsistent, which result everything has a proof. Actualy this assumption
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
415 doesnot work for Ordinals, we discuss this later.
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
416 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
417
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
418 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
419 <h2><a name="content016"> A ∨ B</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
420
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
421 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
422 data _∨_ (A B : Set) : Set where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
423 case1 : A → A ∨ B
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
424 case2 : B → A ∨ B
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
425
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
426 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
427 As Haskell, case1/case2 are patterns.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
428 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
429
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
430 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
431 ex3 : {A B : Set} → ( A ∨ A ) → A
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
432 ex3 = ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
433
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
434 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
435 In a case statement, Agda command C-C C-C generates possible cases in the head.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
436 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
437
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
438 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
439 ex3 : {A B : Set} → ( A ∨ A ) → A
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
440 ex3 (case1 x) = ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
441 ex3 (case2 x) = ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
442
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
443 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
444 Proof schema of ∨ is omit due to the complexity.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
445 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
446
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
447 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
448 <h2><a name="content017"> Negation</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
449
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
450 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
451
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
452 ------------- ⊥-elim
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
453 A
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
454
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
455 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
456 Anything can be derived from bottom, in this case a Set A. There is no introduction rule
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
457 in ⊥, which can be implemented as data which has no constructor.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
458 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
459
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
460 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
461 data ⊥ : Set where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
462
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
463 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
464 ⊥-elim can be proved like this.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
465 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
466
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
467 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
468 ⊥-elim : {A : Set } -&gt; ⊥ -&gt; A
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
469 ⊥-elim ()
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
470
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
471 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
472 () means no match argument nor value.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
473 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
474 A negation can be defined using ⊥ like this.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
475 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
476
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
477 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
478 ¬_ : Set → Set
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
479 ¬ A = A → ⊥
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
480
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
481 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
482
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
483 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
484 <h2><a name="content018">Equality </a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
485
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
486 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
487 All the value in Agda are terms. If we have the same normalized form, two terms are equal.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
488 If we have variables in the terms, we will perform an unification. unifiable terms are equal.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
489 We don't go further on the unification.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
490 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
491
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
492 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
493 { x : A } x ≡ y f x y
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
494 --------------- ≡-intro --------------------- ≡-elim
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
495 x ≡ x f x x
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
496
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
497 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
498 equality _≡_ can be defined as a data.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
499 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
500
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
501 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
502 data _≡_ {A : Set } : A → A → Set where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
503 refl : {x : A} → x ≡ x
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
504
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
505 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
506 The elimination of equality is a substitution in a term.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
507 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
508
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
509 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
510 subst : {A : Set } → { x y : A } → ( f : A → Set ) → x ≡ y → f x → f y
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
511 subst {A} {x} {y} f refl fx = fx
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
512 ex5 : {A : Set} {x y z : A } → x ≡ y → y ≡ z → x ≡ z
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
513 ex5 {A} {x} {y} {z} x≡y y≡z = subst ( λ k → x ≡ k ) y≡z x≡y
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
514
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
515 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
516
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
517 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
518 <h2><a name="content019">Equivalence relation</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
519
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
520 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
521
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
522 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
523 refl' : {A : Set} {x : A } → x ≡ x
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
524 refl' = ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
525 sym : {A : Set} {x y : A } → x ≡ y → y ≡ x
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
526 sym = ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
527 trans : {A : Set} {x y z : A } → x ≡ y → y ≡ z → x ≡ z
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
528 trans = ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
529 cong : {A B : Set} {x y : A } { f : A → B } → x ≡ y → f x ≡ f y
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
530 cong = ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
531
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
532 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
533
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
534 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
535 <h2><a name="content020">Ordering</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
536
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
537 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
538 Relation is a predicate on two value which has a same type.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
539 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
540
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
541 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
542 A → A → Set
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
543
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
544 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
545 Defining order is the definition of this type with predicate or a data.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
546 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
547
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
548 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
549 data _≤_ : Rel ℕ 0ℓ where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
550 z≤n : ∀ {n} → zero ≤ n
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
551 s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
552
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
553 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
554
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
555 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
556 <h2><a name="content021">Quantifier</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
557
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
558 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
559 Handling quantifier in an intuitionistic logic requires special cares.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
560 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
561 In the input of a function, there are no restriction on it, that is, it has
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
562 a universal quantifier. (If we explicitly write ∀, Agda gives us a type inference on it)
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
563 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
564 There is no ∃ in agda, the one way is using negation like this.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
565 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
566  ∃ (x : A ) → p x = ¬ ( ( x : A ) → ¬ ( p x ) )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
567 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
568 On the another way, f : A can be used like this.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
569 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
570
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
571 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
572 p f
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
573
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
574 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
575 If we use a function which can be defined globally which has stronger meaning the
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
576 usage of ∃ x in a logical expression.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
577 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
578
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
579 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
580 <h2><a name="content022">Can we do math in this way?</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
581 Yes, we can. Actually we have Principia Mathematica by Russell and Whitehead (with out computer support).
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
582 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
583 In some sense, this story is a reprinting of the work, (but Principia Mathematica has a different formulation than ZF).
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
584 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
585
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
586 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
587 define mathematical structure as a record
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
588 program inferences as if we have proofs in variables
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
589
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
590 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
591
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
592 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
593 <h2><a name="content023">Things which Agda cannot prove</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
594
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
595 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
596 The infamous Internal Parametricity is a limitation of Agda, it cannot prove so called Free Theorem, which
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
597 leads uniqueness of a functor in Category Theory.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
598 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
599 Functional extensionality cannot be proved.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
600 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
601 (∀ x → f x ≡ g x) → f ≡ g
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
602
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
603 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
604 Agda has no law of exclude middle.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
605 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
606
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
607 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
608 a ∨ ( ¬ a )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
609
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
610 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
611 For example, (A → B) → ¬ B → ¬ A can be proved but, ( ¬ B → ¬ A ) → A → B cannot.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
612 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
613 It also other problems such as termination, type inference or unification which we may overcome with
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
614 efforts or devices or may not.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
615 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
616 If we cannot prove something, we can safely postulate it unless it leads a contradiction.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
617 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
618
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
619
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
620 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
621
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
622 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
623 <h2><a name="content024">Classical story of ZF Set Theory</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
624
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
625 <p>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
626 <a name="set-theory">
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
627 Assuming ZF, constructing a model of ZF is a flow of classical Set Theory, which leads
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
628 a relative consistency proof of the Set Theory.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
629 Ordinal number is used in the flow.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
630 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
631 In Agda, first we defines Ordinal numbers (Ordinals), then introduce Ordinal Definable Set (OD).
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
632 We need some non constructive assumptions in the construction. A model of Set theory is
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
633 constructed based on these assumptions.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
634 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
635 <img src="fig/set-theory.svg">
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
636
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
637 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
638
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
639 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
640 <h2><a name="content025">Ordinals</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
641 Ordinals are our intuition of infinite things, which has ∅ and orders on the things.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
642 It also has a successor osuc.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
643 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
644
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
645 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
646 record Ordinals {n : Level} : Set (suc (suc n)) where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
647 field
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
648 ord : Set n
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
649 o∅ : ord
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
650 osuc : ord → ord
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
651 _o&lt;_ : ord → ord → Set n
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
652 isOrdinal : IsOrdinals ord o∅ osuc _o&lt;_
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
653
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
654 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
655 It is different from natural numbers in way. The order of Ordinals is not defined in terms
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
656 of successor. It is given from outside, which make it possible to have higher order infinity.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
657 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
658
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
659 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
660 <h2><a name="content026">Axiom of Ordinals</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
661 Properties of infinite things. We request a transfinite induction, which states that if
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
662 some properties are satisfied below all possible ordinals, the properties are true on all
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
663 ordinals.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
664 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
665 Successor osuc has no ordinal between osuc and the base ordinal. There are some ordinals
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
666 which is not a successor of any ordinals. It is called limit ordinal.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
667 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
668 Any two ordinal can be compared, that is less, equal or more, that is total order.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
669 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
670
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
671 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
672 record IsOrdinals {n : Level} (ord : Set n) (o∅ : ord )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
673 (osuc : ord → ord )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
674 (_o&lt;_ : ord → ord → Set n) : Set (suc (suc n)) where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
675 field
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
676 Otrans : {x y z : ord } → x o&lt; y → y o&lt; z → x o&lt; z
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
677 OTri : Trichotomous {n} _≡_ _o&lt;_
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
678 ¬x&lt;0 : { x : ord } → ¬ ( x o&lt; o∅ )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
679 &lt;-osuc : { x : ord } → x o&lt; osuc x
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
680 osuc-≡&lt; : { a x : ord } → x o&lt; osuc a → (x ≡ a ) ∨ (x o&lt; a)
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
681 TransFinite : { ψ : ord → Set (suc n) }
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
682 → ( (x : ord) → ( (y : ord ) → y o&lt; x → ψ y ) → ψ x )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
683 → ∀ (x : ord) → ψ x
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
684
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
685 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
686
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
687 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
688 <h2><a name="content027">Concrete Ordinals or Countable Ordinals</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
689
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
690 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
691 We can define a list like structure with level, which is a kind of two dimensional infinite array.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
692 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
693
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
694 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
695 data OrdinalD {n : Level} : (lv : Nat) → Set n where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
696 Φ : (lv : Nat) → OrdinalD lv
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
697 OSuc : (lv : Nat) → OrdinalD {n} lv → OrdinalD lv
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
698
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
699 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
700 The order of the OrdinalD can be defined in this way.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
701 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
702
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
703 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
704 data _d&lt;_ {n : Level} : {lx ly : Nat} → OrdinalD {n} lx → OrdinalD {n} ly → Set n where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
705 Φ&lt; : {lx : Nat} → {x : OrdinalD {n} lx} → Φ lx d&lt; OSuc lx x
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
706 s&lt; : {lx : Nat} → {x y : OrdinalD {n} lx} → x d&lt; y → OSuc lx x d&lt; OSuc lx y
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
707
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
708 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
709 This is a simple data structure, it has no abstract assumptions, and it is countable many data
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
710 structure.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
711 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
712
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
713 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
714 Φ 0
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
715 OSuc 2 ( Osuc 2 ( Osuc 2 (Φ 2)))
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
716 Osuc 0 (Φ 0) d&lt; Φ 1
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
717
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
718 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
719
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
720 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
721 <h2><a name="content028">Model of Ordinals</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
722
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
723 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
724 It is easy to show OrdinalD and its order satisfies the axioms of Ordinals.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
725 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
726 So our Ordinals has a mode. This means axiom of Ordinals are consistent.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
727 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
728
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
729 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
730 <h2><a name="content029">Debugging axioms using Model</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
731 Whether axiom is correct or not can be checked by a validity on a mode.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
732 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
733 If not, we may fix the axioms or the model, such as the definitions of the order.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
734 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
735 We can also ask whether the inputs exist.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
736 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
737
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
738 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
739 <h2><a name="content030">Countable Ordinals can contains uncountable set?</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
740 Yes, the ordinals contains any level of infinite Set in the axioms.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
741 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
742 If we handle real-number in the model, only countable number of real-number is used.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
743 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
744
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
745 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
746 from the outside view point, it is countable
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
747 from the internal view point, it is uncountable
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
748
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
749 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
750 The definition of countable/uncountable is the same, but the properties are different
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
751 depending on the context.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
752 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
753 We don't show the definition of cardinal number here.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
754 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
755
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
756 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
757 <h2><a name="content031">What is Set</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
758 The word Set in Agda is not a Set of ZF Set, but it is a type (why it is named Set?).
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
759 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
760 From naive point view, a set i a list, but in Agda, elements have all the same type.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
761 A set in ZF may contain other Sets in ZF, which not easy to implement it as a list.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
762 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
763 Finite set may be written in finite series of ∨, but ...
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
764 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
765
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
766 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
767 <h2><a name="content032">We don't ask the contents of Set. It can be anything.</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
768 From empty set φ, we can think a set contains a φ, and a pair of φ and the set, and so on,
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
769 and all of them, and again we repeat this.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
770 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
771
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
772 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
773 φ {φ} {φ,{φ}}, {φ,{φ},...}
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
774
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
775 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
776 It is called V.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
777 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
778 This operation can be performed within a ZF Set theory. Classical Set Theory assumes
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
779 ZF, so this kind of thing is allowed.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
780 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
781 But in our case, we have no ZF theory, so we are going to use Ordinals.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
782 <p>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
783 The idea is to use an ordinal as a pointer to a record which defines a Set.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
784 If the recored defines a series of Ordinals which is a pointer to the Set. This record looks like a Set.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
785 <p>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
786
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
787 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
788 <h2><a name="content033">Ordinal Definable Set</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
789 We can define a sbuset of Ordinals using predicates. What is a subset?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
790 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
791
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
792 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
793 a predicate has an Ordinal argument
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
794
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
795 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
796 is an Ordinal Definable Set (OD). In Agda, OD is defined as follows.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
797 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
798
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
799 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
800 record OD : Set (suc n ) where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
801 field
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
802 def : (x : Ordinal ) → Set n
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
803
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
804 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
805 Ordinals itself is not a set in a ZF Set theory but a class. In OD,
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
806 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
807
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
808 <pre>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
809 data One : Set n where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
810 OneObj : One
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
811 record { def = λ x → One }
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
812
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
813 </pre>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
814 means it accepets all Ordinals, i.e. this is Ordinals itself, so ODs are larger than ZF Set.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
815 You can say OD is a class in ZF Set Theory term.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
816 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
817
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
818 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
819 <h2><a name="content034">OD is not ZF Set</a></h2>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
820 If we have 1 to 1 mapping between an OD and an Ordinal, OD contains several ODs and OD looks like
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
821 a Set. The idea is to use an ordinal as a pointer to OD.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
822 Unfortunately this scheme does not work well. As we saw OD includes all Ordinals, which is a maximum of OD, but Ordinals has no maximum at all. So we have a contradction like
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
823 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
824
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
825 <pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
826 ¬OD-order : ( &amp; : OD → Ordinal )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
827 → ( * : Ordinal → OD ) → ( { x y : OD } → def y ( &amp; x ) → &amp; x o&lt; &amp; y) → ⊥
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
828 ¬OD-order &amp; * c&lt;→o&lt; = ?
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
829
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
830 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
831 Actualy we can prove this contrdction, so we need some restrctions on OD.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
832 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
833 This is a kind of Russel paradox, that is if OD contains everything, what happens if it contains itself.
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
834 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
835
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
836 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
837 <h2><a name="content035"> HOD : Hereditarily Ordinal Definable</a></h2>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
838 What we need is a bounded OD, the containment is limited by an ordinal.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
839 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
840
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
841 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
842 record HOD : Set (suc n) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
843 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
844 od : OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
845 odmax : Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
846 &lt;odmax : {y : Ordinal} → def od y → y o&lt; odmax
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
847
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
848 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
849 In classical Set Theory, HOD stands for Hereditarily Ordinal Definable, which means
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
850 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
851
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
852 <pre>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
853 HOD = { x | TC x ⊆ OD }
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
854
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
855 </pre>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
856 TC x is all transitive closure of x, that is elements of x and following all elements of them are all OD. But what is x? In this case, x is an Set which we don't have yet. In our case, HOD is a bounded OD.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
857 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
858
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
859 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
860 <h2><a name="content036">1 to 1 mapping between an HOD and an Ordinal</a></h2>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
861 HOD is a predicate on Ordinals and the solution is bounded by some ordinal. If we have a mapping
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
862 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
863
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
864 <pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
865 &amp; : HOD → Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
866 * : Ordinal → HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
867 oiso : {x : HOD } → * ( &amp; x ) ≡ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
868 diso : {x : Ordinal } → &amp; ( * x ) ≡ x
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
869
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
870 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
871 we can check an HOD is an element of the OD using def.
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
872 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
873 A ∋ x can be define as follows.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
874 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
875
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
876 <pre>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
877 _∋_ : ( A x : HOD ) → Set n
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
878 _∋_ A x = def (od A) ( &amp; x )
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
879
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
880 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
881 In ψ : Ordinal → Set, if A is a record { def = λ x → ψ x } , then
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
882 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
883
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
884 <pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
885 A x = def A ( &amp; x ) = ψ (&amp; x)
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
886
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
887 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
888 They say the existing of the mappings can be proved in Classical Set Theory, but we
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
889 simply assumes these non constructively.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
890 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
891 <img src="fig/ord-od-mapping.svg">
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
892
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
893 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
894
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
895 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
896 <h2><a name="content037">Order preserving in the mapping of OD and Ordinal</a></h2>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
897 Ordinals have the order and HOD has a natural order based on inclusion ( def / ∋ ).
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
898 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
899
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
900 <pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
901 def (od y) ( &amp; x )
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
902
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
903 </pre>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
904 An elements of HOD should be defined before the HOD, that is, an ordinal corresponding an elements
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
905 have to be smaller than the corresponding ordinal of the containing OD.
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
906 We also assumes subset is always smaller. This is necessary to make a limit of Power Set.
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
907 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
908
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
909 <pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
910 c&lt;→o&lt; : {x y : HOD } → def (od y) ( &amp; x ) → &amp; x o&lt; &amp; y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
911 ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → &amp; y o&lt; osuc (&amp; z)
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
912
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
913 </pre>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
914 If wa assumes reverse order preservation,
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
915 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
916
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
917 <pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
918 o&lt;→c&lt; : {n : Level} {x y : Ordinal } → x o&lt; y → def (* y) x
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
919
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
920 </pre>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
921 ∀ x ∋ ∅ becomes true, which manes all OD becomes Ordinals in the model.
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
922 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
923 <img src="fig/ODandOrdinals.svg">
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
924
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
925 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
926
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
927 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
928 <h2><a name="content038">Various Sets</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
929 In classical Set Theory, there is a hierarchy call L, which can be defined by a predicate.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
930 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
931
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
932 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
933 Ordinal / things satisfies axiom of Ordinal / extension of natural number
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
934 V / hierarchical construction of Set from φ
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
935 L / hierarchical predicate definable construction of Set from φ
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
936 HOD / Hereditarily Ordinal Definable
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
937 OD / equational formula on Ordinals
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
938 Agda Set / Type / it also has a level
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
939
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
940 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
941
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
942 <hr/>
361
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
943 <h2><a name="content039">Fixing ZF axom to fit intuitionistic logic</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
944
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
945 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
946 We use ODs as Sets in ZF, and defines record ZF, that is, we have to define
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
947 ZF axioms in Agda.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
948 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
949 It may not valid in our model. We have to debug it.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
950 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
951 Fixes are depends on axioms.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
952 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
953 <img src="fig/axiom-type.svg">
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
954
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
955 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
956 <a href="fig/zf-record.html">
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
957 ZFのrecord </a>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
958 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
959
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
960 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
961 <h2><a name="content040">Pure logical axioms</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
962
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
963 <pre>
279
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
964 empty, pair, select, ε-induction??infinity
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
965
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
966 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
967 These are logical relations among OD.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
968 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
969
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
970 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
971 empty : ∀( x : ZFSet ) → ¬ ( ∅ ∋ x )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
972 pair→ : ( x y t : ZFSet ) → (x , y) ∋ t → ( t ≈ x ) ∨ ( t ≈ y )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
973 pair← : ( x y t : ZFSet ) → ( t ≈ x ) ∨ ( t ≈ y ) → (x , y) ∋ t
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
974 selection : { ψ : ZFSet → Set m } → ∀ { X y : ZFSet } → ( ( y ∈ X ) ∧ ψ y ) ⇔ (y ∈ Select X ψ )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
975 infinity∅ : ∅ ∈ infinite
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
976 infinity : ∀( x : ZFSet ) → x ∈ infinite → ( x ∪ ( x , x ) ) ∈ infinite
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
977 ε-induction : { ψ : OD → Set (suc n)}
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
978 → ( {x : OD } → ({ y : OD } → x ∋ y → ψ y ) → ψ x )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
979 → (x : OD ) → ψ x
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
980
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
981 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
982 finitely can be define by Agda data.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
983 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
984
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
985 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
986 data infinite-d : ( x : Ordinal ) → Set n where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
987 iφ : infinite-d o∅
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
988 isuc : {x : Ordinal } → infinite-d x →
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
989 infinite-d (&amp; ( Union (* x , (* x , * x ) ) ))
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
990
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
991 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
992 Union (x , ( x , x )) should be an direct successor of x, but we cannot prove it in our model.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
993 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
994
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
995 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
996 <h2><a name="content041">Axiom of Pair</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
997 In the Tanaka's book, axiom of pair is as follows.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
998 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
999
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1000 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1001 ∀ x ∀ y ∃ z ∀ t ( z ∋ t ↔ t ≈ x ∨ t ≈ y)
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1002
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1003 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1004 We have fix ∃ z, a function (x , y) is defined, which is _,_ .
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1005 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1006
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1007 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1008 _,_ : ( A B : ZFSet ) → ZFSet
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1009
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1010 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1011 using this, we can define two directions in separates axioms, like this.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1012 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1013
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1014 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1015 pair→ : ( x y t : ZFSet ) → (x , y) ∋ t → ( t ≈ x ) ∨ ( t ≈ y )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1016 pair← : ( x y t : ZFSet ) → ( t ≈ x ) ∨ ( t ≈ y ) → (x , y) ∋ t
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1017
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1018 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1019 This is already written in Agda, so we use these as axioms. All inputs have ∀.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1020 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1021
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1022 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1023 <h2><a name="content042">pair in OD</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1024 OD is an equation on Ordinals, we can simply write axiom of pair in the OD.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1025 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1026
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1027 <pre>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
1028 _,_ : HOD → HOD → HOD
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1029 x , y = record { od = record { def = λ t → (t ≡ &amp; x ) ∨ ( t ≡ &amp; y ) } ; odmax = ? ; &lt;odmax = ? }
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1030
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1031 </pre>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
1032 It is easy to find out odmax from odmax of x and y.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
1033 <p>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1034 ≡ is an equality of λ terms, but please not that this is equality on Ordinals.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1035 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1036
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1037 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1038 <h2><a name="content043">Validity of Axiom of Pair</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1039 Assuming ZFSet is OD, we are going to prove pair→ .
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1040 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1041
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1042 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1043 pair→ : ( x y t : OD ) → (x , y) ∋ t → ( t == x ) ∨ ( t == y )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1044 pair→ x y t p = ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1045
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1046 </pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1047 In this program, type of p is ( x , y ) ∋ t , that is def ( x , y ) that is, (t ≡ &amp; x ) ∨ ( t ≡ &amp; y ) .
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1048 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1049 Since _∨_ is a data, it can be developed as (C-c C-c : agda2-make-case ).
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1050 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1051
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1052 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1053 pair→ x y t (case1 t≡x ) = ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1054 pair→ x y t (case2 t≡y ) = ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1055
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1056 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1057 The type of the ? is ( t == x ) ∨ ( t == y ), again it is data _∨_ .
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1058 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1059
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1060 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1061 pair→ x y t (case1 t≡x ) = case1 ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1062 pair→ x y t (case2 t≡y ) = case2 ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1063
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1064 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1065 The ? in case1 is t == x, so we have to create this from t≡x, which is a name of a variable
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1066 which type is
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1067 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1068
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1069 <pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1070 t≡x : &amp; t ≡ &amp; x
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1071
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1072 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1073 which is shown by an Agda command (C-C C-E : agda2-show-context ).
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1074 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1075 But we haven't defined == yet.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1076 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1077
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1078 <hr/>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1079 <h2><a name="content044">Equality of OD and Axiom of Extensionality </a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1080 OD is defined by a predicates, if we compares normal form of the predicates, even if
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1081 it contains the same elements, it may be different, which is no good as an equality of
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1082 Sets.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1083 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1084 Axiom of Extensionality requires sets having the same elements are handled in the same way
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1085 each other.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1086 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1087
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1088 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1089 ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1090
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1091 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1092 We can write this axiom in Agda as follows.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1093 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1094
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1095 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1096 extensionality : { A B w : ZFSet } → ( (z : ZFSet) → ( A ∋ z ) ⇔ (B ∋ z) ) → ( A ∈ w ⇔ B ∈ w )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1097
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1098 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1099 So we use ( A ∋ z ) ⇔ (B ∋ z) as an equality (_==_) of our model. We have to show
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1100 A ∈ w ⇔ B ∈ w from A == B.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1101 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1102 x == y can be defined in this way.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1103 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1104
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1105 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1106 record _==_ ( a b : OD ) : Set n where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1107 field
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1108 eq→ : ∀ { x : Ordinal } → def a x → def b x
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1109 eq← : ∀ { x : Ordinal } → def b x → def a x
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1110
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1111 </pre>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
1112 Actually, (z : HOD) → (A ∋ z) ⇔ (B ∋ z) implies od A == od B.
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1113 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1114
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1115 <pre>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
1116 extensionality0 : {A B : HOD } → ((z : HOD) → (A ∋ z) ⇔ (B ∋ z)) → od A == od B
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1117 eq→ (extensionality0 {A} {B} eq ) {x} d = ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1118 eq← (extensionality0 {A} {B} eq ) {x} d = ?
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1119
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1120 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1121 ? are def B x and def A x and these are generated from eq : (z : OD) → (A ∋ z) ⇔ (B ∋ z) .
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1122 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1123 Actual proof is rather complicated.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1124 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1125
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1126 <pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1127 eq→ (extensionality0 {A} {B} eq ) {x} d = odef-iso {A} {B} (sym diso) (proj1 (eq (* x))) d
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1128 eq← (extensionality0 {A} {B} eq ) {x} d = odef-iso {B} {A} (sym diso) (proj2 (eq (* x))) d
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1129
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1130 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1131 where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1132 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1133
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1134 <pre>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
1135 odef-iso : {A B : HOD } {x y : Ordinal } → x ≡ y → (def A (od y) → def (od B) y) → def (od A) x → def (od B) x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
1136 odef-iso refl t = t
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1137
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1138 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1139
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1140 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1141 <h2><a name="content045">The uniqueness of HOD</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1142
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1143 <p>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1144 To prove extensionality or other we need ==→o≡.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1145 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1146 Since we have ==→o≡ , so odmax have to be unique. We should have odmaxmin in HOD.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1147 We can calculate the minimum using sup if we have bound but it is tedius.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1148 Only Select has non minimum odmax. We have the same problem on 'def' itself, but we leave it, that is we assume the
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1149 assumption of predicates of Agda have a unique form, it is something like the
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1150 functional extensionality assumption.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1151 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1152
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1153 <hr/>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1154 <h2><a name="content046">Validity of Axiom of Extensionality</a></h2>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
1155 If we can derive (w ∋ A) ⇔ (w ∋ B) from od A == od B, the axiom becomes valid, but it seems impossible, so we assumes
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1156 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1157
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1158 <pre>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
1159 ==→o≡ : { x y : HOD } → (od x == od y) → x ≡ y
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1160
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1161 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1162 Using this, we have
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1163 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1164
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1165 <pre>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
1166 extensionality : {A B w : HOD } → ((z : HOD ) → (A ∋ z) ⇔ (B ∋ z)) → (w ∋ A) ⇔ (w ∋ B)
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1167 proj1 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) ( ==→o≡ (extensionality0 {A} {B} eq) ) d
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
1168 proj2 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) (sym ( ==→o≡ (extensionality0 {A} {B} eq) )) d
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1169
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1170 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1171
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1172 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1173 <h2><a name="content047">Axiom of infinity</a></h2>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1174
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1175 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1176 It means it has ω as a ZF Set. It is ususally written like this.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1177 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1178
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1179 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1180 ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1181
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1182 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1183 x ∪ { x } is Union (x , (x , x)) in our notation. It contains existential quantifier, so we introduce a function
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1184 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1185
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1186 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1187 infinite : ZFSet
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1188 infinity∅ : ∅ ∈ infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1189 infinity : ∀( x : ZFSet ) → x ∈ infinite → ( x ∪ { x }) ∈ infinite
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1190
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1191 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1192
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1193 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1194 <h2><a name="content048">ω in HOD</a></h2>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1195
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1196 <p>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1197 To define an OD which arrows &amp; (Union (x , (x , x))) as a predicate, we can use Agda data structure.
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1198 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1199
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1200 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1201 data infinite-d : ( x : Ordinal ) → Set n where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1202 iφ : infinite-d o∅
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1203 isuc : {x : Ordinal } → infinite-d x →
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1204 infinite-d (&amp; ( Union (* x , (* x , * x ) ) ))
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1205
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1206 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1207 It has simular structure as Data.Nat in Agda, and it defines a correspendence of HOD and the data structure. Now
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1208 we can define HOD like this.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1209 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1210
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1211 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1212 infinite : HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1213 infinite = record { od = record { def = λ x → infinite-d x } ; odmax = ? ; &lt;odmax = ? }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1214
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1215 </pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1216 So what is the bound of ω? Analyzing the definition, it depends on the value of &amp; (x , x), which
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1217 cannot know the aboslute value. This is because we don't have constructive definition of &amp; : HOD → Ordinal.
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1218 <p>
361
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1219
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1220 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1221 <h2><a name="content049">HOD and Agda data structure</a></h2>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1222 We may have
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1223 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1224
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1225 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1226 a HOD &lt;=&gt; Agda Data Strucure
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1227
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1228 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1229 as a data in Agda. Ex.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1230 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1231
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1232 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1233 data ord-pair : (p : Ordinal) → Set n where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1234 pair : (x y : Ordinal ) → ord-pair ( &amp; ( &lt; * x , * y &gt; ) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1235 ZFProduct : OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1236 ZFProduct = record { def = λ x → ord-pair x }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1237 pi1 : { p : Ordinal } → ord-pair p → Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1238 pi1 ( pair x y) = x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1239 π1 : { p : HOD } → def ZFProduct (&amp; p) → HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1240 π1 lt = * (pi1 lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1241 p-iso : { x : HOD } → (p : def ZFProduct (&amp; x) ) → &lt; π1 p , π2 p &gt; ≡ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1242 p-iso {x} p = ord≡→≡ (op-iso p)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1243
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1244 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1245
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1246 <hr/>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1247 <h2><a name="content050">HOD Ordrinal mapping</a></h2>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1248
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1249 <p>
361
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1250 We have large freedom on HOD. We reqest no minimality on odmax, so it may arbitrary larger.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1251 The address of HOD can be larger at least it have to be larger than the content's address.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1252 We only have a relative ordering such as
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1253 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1254
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1255 <pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1256 pair-xx&lt;xy : {x y : HOD} → &amp; (x , x) o&lt; osuc (&amp; (x , y) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1257 pair&lt;y : {x y : HOD } → y ∋ x → &amp; (x , x) o&lt; osuc (&amp; y)
361
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1258
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1259 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1260 Basicaly, we cannot know the concrete address of HOD other than empty set.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1261 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1262 <img src="fig/address-of-HOD.svg">
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1263
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1264 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1265
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1266 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1267 <h2><a name="content051">Possible restriction on HOD</a></h2>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1268 We need some restriction on the HOD-Ordinal mapping. Simple one is this.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1269 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1270
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1271 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1272 ωmax : Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1273 &lt;ωmax : {y : Ordinal} → infinite-d y → y o&lt; ωmax
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1274
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1275 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1276 It depends on infinite-d and put no assuption on the other similar construction. A more general one may be
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1277 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1278
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1279 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1280 hod-ord&lt; : {x : HOD } → Set n
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1281 hod-ord&lt; {x} = &amp; x o&lt; next (odmax x)
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1282
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1283 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1284 next : Ordinal → Ordinal means imediate next limit ordinal of x. It supress unecessary space between address of HOD and
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1285 its bound.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1286 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1287 In other words, the space between address of HOD and its bound is arbitrary, it is possible to assume ω has no bound.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1288 This is the reason of necessity of Axiom of infinite.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1289 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1290
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1291 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1292 <h2><a name="content052">increment pase of address of HOD</a></h2>
361
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1293 Assuming, hod-ord&lt; , we have
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1294 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1295
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1296 <pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1297 pair-ord&lt; : {x : HOD } → ( {y : HOD } → &amp; y o&lt; next (odmax y) ) → &amp; ( x , x ) o&lt; next (&amp; x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1298 pair-ord&lt; {x} ho&lt; = subst (λ k → &amp; (x , x) o&lt; k ) lemmab0 lemmab1 where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1299 lemmab0 : next (odmax (x , x)) ≡ next (&amp; x)
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1300
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1301 </pre>
361
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1302 So the address of ( x , x) and Union (x , (x , x)) is restricted in the limit ordinal. This makes ω bound. We can prove
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1303 <p>
361
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1304
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1305 <pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1306 infinite-bound : ({x : HOD} → &amp; x o&lt; next (odmax x)) → {y : Ordinal} → infinite-d y → y o&lt; next o∅
361
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1307
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1308 </pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1309 We also notice that if we have &amp; (x , x) ≡ osuc (&amp; x), c&lt;→o&lt; can be drived from ⊆→o≤ .
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1310 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1311
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1312 <pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1313 ⊆→o≤→c&lt;→o&lt; : ({x : HOD} → &amp; (x , x) ≡ osuc (&amp; x) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1314 → ({y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → &amp; y o&lt; osuc (&amp; z) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1315 → {x y : HOD } → def (od y) ( &amp; x ) → &amp; x o&lt; &amp; y
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1316
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1317 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1318
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1319 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1320 <h2><a name="content053">Non constructive assumptions so far</a></h2>
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
1321
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1322 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1323
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1324 <pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1325 &amp; : HOD → Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1326 * : Ordinal → HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1327 c&lt;→o&lt; : {x y : HOD } → def (od y) ( &amp; x ) → &amp; x o&lt; &amp; y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1328 ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → &amp; y o&lt; osuc (&amp; z)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1329 oiso : {x : HOD } → * ( &amp; x ) ≡ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1330 diso : {x : Ordinal } → &amp; ( * x ) ≡ x
338
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
1331 ==→o≡ : {x y : HOD } → (od x == od y) → x ≡ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
1332 sup-o : (A : HOD) → ( ( x : Ordinal ) → def (od A) x → Ordinal ) → Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 279
diff changeset
1333 sup-o&lt; : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o&lt; sup-o A ψ
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1334
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1335 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1336
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1337 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1338 <h2><a name="content054">Axiom which have negation form</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1339
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1340 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1341
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1342 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1343 Union, Selection
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1344
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1345 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1346 These axioms contains ∃ x as a logical relation, which can be described in ¬ ( ∀ x ( ¬ p )).
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1347 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1348 Axiom of replacement uses upper bound of function on Ordinals, which makes it non-constructive.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1349 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1350 Power Set axiom requires double negation,
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1351 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1352
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1353 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1354 power→ : ∀( A t : ZFSet ) → Power A ∋ t → ∀ {x} → t ∋ x → ¬ ¬ ( A ∋ x )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1355 power← : ∀( A t : ZFSet ) → t ⊆_ A → Power A ∋ t
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1356
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1357 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1358 If we have an assumption of law of exclude middle, we can recover the original A ∋ x form.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1359 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1360
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1361 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1362 <h2><a name="content055">Union </a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1363 The original form of the Axiom of Union is
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1364 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1365
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1366 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1367 ∀ x ∃ y ∀ z (z ∈ y ⇔ ∃ u ∈ x ∧ (z ∈ u))
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1368
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1369 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1370 Union requires the existence of b in a ⊇ ∃ b ∋ x . We will use negation form of ∃.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1371 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1372
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1373 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1374 union→ : ( X z u : ZFSet ) → ( X ∋ u ) ∧ (u ∋ z ) → Union X ∋ z
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1375 union← : ( X z : ZFSet ) → (X∋z : Union X ∋ z ) → ¬ ( (u : ZFSet ) → ¬ ((X ∋ u) ∧ (u ∋ z )))
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1376
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1377 </pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1378 The definition of Union in HOD is like this.
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1379 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1380
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1381 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1382 Union : HOD → HOD
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1383 Union U = record { od = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((odef U u) ∧ (odef (* u) x))) }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1384 ; odmax = osuc (&amp; U) ; &lt;odmax = ? }
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1385
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1386 </pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1387 The bound of Union is evident, but its proof is rather complicated.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1388 <p>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1389 Proof of validity is straight forward.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1390 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1391
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1392 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1393 union→ : (X z u : HOD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1394 union→ X z u xx not = ⊥-elim ( not (&amp; u) ( record { proj1 = proj1 xx
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1395 ; proj2 = subst ( λ k → odef k (&amp; z)) (sym oiso) (proj2 xx) } ))
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1396 union← : (X z : HOD) (X∋z : Union X ∋ z) → ¬ ( (u : HOD ) → ¬ ((X ∋ u) ∧ (u ∋ z )))
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1397 union← X z UX∋z = FExists _ lemma UX∋z where
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1398 lemma : {y : Ordinal} → odef X y ∧ odef (* y) (&amp; z) → ¬ ((u : HOD) → ¬ (X ∋ u) ∧ (u ∋ z))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1399 lemma {y} xx not = not (* y) record { proj1 = subst ( λ k → odef X k ) (sym diso) (proj1 xx ) ; proj2 = proj2 xx }
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1400
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1401 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1402 where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1403 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1404
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1405 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1406 FExists : {m l : Level} → ( ψ : Ordinal → Set m )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1407 → {p : Set l} ( P : { y : Ordinal } → ψ y → ¬ p )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1408 → (exists : ¬ (∀ y → ¬ ( ψ y ) ))
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1409 → ¬ p
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1410 FExists {m} {l} ψ {p} P = contra-position ( λ p y ψy → P {y} ψy p )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1411
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1412 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1413 which checks existence using contra-position.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1414 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1415
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1416 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1417 <h2><a name="content056">Axiom of replacement</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1418 We can replace the elements of a set by a function and it becomes a set. From the book,
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1419 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1420
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1421 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1422 ∀ x ∀ y ∀ z ( ( ψ ( x , y ) ∧ ψ ( x , z ) ) → y = z ) → ∀ X ∃ A ∀ y ( y ∈ A ↔ ∃ x ∈ X ψ ( x , y ) )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1423
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1424 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1425 The existential quantifier can be related by a function,
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1426 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1427
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1428 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1429 Replace : HOD → (HOD → HOD ) → HOD
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1430
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1431 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1432 The axioms becomes as follows.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1433 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1434
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1435 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1436 replacement← : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet ) → x ∈ X → ψ x ∈ Replace X ψ
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1437 replacement→ : {ψ : ZFSet → ZFSet} → ∀ ( X x : ZFSet ) → ( lt : x ∈ Replace X ψ ) → ¬ ( ∀ (y : ZFSet) → ¬ ( x ≈ ψ y ) )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1438
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1439 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1440 In the axiom, the existence of the original elements is necessary. In order to do that we use OD which has
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1441 negation form of existential quantifier in the definition.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1442 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1443
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1444 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1445 in-codomain : (X : OD ) → ( ψ : OD → OD ) → OD
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1446 in-codomain X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( def X y ∧ ( x ≡ &amp; (ψ (* y ))))) }
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1447
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1448 </pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1449 in-codomain is a logical relation-ship, and it is written in OD.
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1450 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1451
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1452 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1453 Replace : HOD → (HOD → HOD) → HOD
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1454 Replace X ψ = record { od = record { def = λ x → (x o&lt; sup-o X (λ y X∋y → &amp; (ψ (* y)))) ∧ def (in-codomain X ψ) x }
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1455 ; odmax = rmax ; &lt;odmax = rmax&lt;} where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1456 rmax : Ordinal
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1457 rmax = sup-o X (λ y X∋y → &amp; (ψ (* y)))
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1458 rmax&lt; : {y : Ordinal} → (y o&lt; rmax) ∧ def (in-codomain X ψ) y → y o&lt; rmax
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1459 rmax&lt; lt = proj1 lt
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1460
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1461 </pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1462 The bbound of Replace is defined by supremum, that is, it is not limited in a limit ordinal of original ZF Set.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1463 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1464 Once we have a bound, validity of the axiom is an easy task to check the logical relation-ship.
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1465 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1466
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1467 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1468 <h2><a name="content057">Validity of Power Set Axiom</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1469 The original Power Set Axiom is this.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1470 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1471
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1472 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1473 ∀ X ∃ A ∀ t ( t ∈ A ↔ t ⊆ X ) )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1474
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1475 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1476 The existential quantifier is replaced by a function
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1477 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1478
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1479 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1480 Power : ( A : OD ) → OD
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1481
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1482 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1483 t ⊆ X is a record like this.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1484 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1485
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1486 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1487 record _⊆_ ( A B : OD ) : Set (suc n) where
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1488 field
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1489 incl : { x : OD } → A ∋ x → B ∋ x
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1490
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1491 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1492 Axiom becomes likes this.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1493 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1494
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1495 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1496 power→ : ( A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → ¬ ¬ (A ∋ x)
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1497 power← : (A t : OD) → ({x : OD} → (t ∋ x → A ∋ x)) → Power A ∋ t
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1498
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1499 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1500 The validity of the axioms are slight complicated, we have to define set of all subset. We define
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1501 subset in a different form.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1502 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1503
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1504 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1505 ZFSubset : (A x : HOD ) → HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1506 ZFSubset A x = record { od = record { def = λ y → odef A y ∧ odef x y } ; odmax = omin (odmax A) (odmax x) ; &lt;odmax = lemma } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1507 lemma : {y : Ordinal} → def (od A) y ∧ def (od x) y → y o&lt; omin (odmax A) (odmax x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1508 lemma {y} and = min1 (&lt;odmax A (proj1 and)) (&lt;odmax x (proj2 and))
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1509
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1510 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1511 We can prove,
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1512 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1513
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1514 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1515 ( {y : HOD } → x ∋ y → ZFSubset A x ∋ y ) ⇔ ( x ⊆ A )
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1516
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1517 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1518 We only have upper bound as an ordinal, but we have an obvious OD based on the order of Ordinals,
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1519 which is an Ordinals with our Model.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1520 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1521
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1522 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1523 Ord : ( a : Ordinal ) → OD
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1524 Ord a = record { def = λ y → y o&lt; a }
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1525 Def : (A : OD ) → OD
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1526 Def A = Ord ( sup-o ( λ x → &amp; ( ZFSubset A (* x )) ) )
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1527
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1528 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1529 This is slight larger than Power A, so we replace all elements x by A ∩ x (some of them may empty).
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1530 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1531
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1532 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1533 Power : OD → OD
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1534 Power A = Replace (Def (Ord (&amp; A))) ( λ x → A ∩ x )
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1535
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1536 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1537 Creating Power Set of Ordinals is rather easy, then we use replacement axiom on A ∩ x since we have this.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1538 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1539
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1540 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1541 ∩-≡ : { a b : HOD } → ({x : HOD } → (a ∋ x → b ∋ x)) → od a == od ( b ∩ a )
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1542
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1543 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1544 In case of Ord a intro of Power Set axiom becomes valid.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1545 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1546
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1547 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1548 ord-power← : (a : Ordinal ) (t : HOD) → ({x : HOD} → (t ∋ x → (Ord a) ∋ x)) → OPwr (Ord a) ∋ t
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1549
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1550 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1551 Using this, we can prove,
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1552 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1553
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1554 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1555 power→ : ( A t : HOD) → Power A ∋ t → {x : HOD} → t ∋ x → ¬ ¬ (A ∋ x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1556 power← : (A t : HOD) → ({x : HOD} → (t ∋ x → A ∋ x)) → Power A ∋ t
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1557
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1558 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1559
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1560 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1561 <h2><a name="content058">Axiom of regularity, Axiom of choice, ε-induction</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1562
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1563 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1564 Axiom of regularity requires non self intersectable elements (which is called minimum), if we
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1565 replace it by a function, it becomes a choice function. It makes axiom of choice valid.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1566 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1567 This means we cannot prove axiom regularity form our model, and if we postulate this, axiom of
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1568 choice also becomes valid.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1569 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1570
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1571 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1572 minimal : (x : HOD ) → ¬ (x == od∅ )→ OD
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1573 x∋minimal : (x : HOD ) → ( ne : ¬ (x == od∅ ) ) → def x ( &amp; ( minimal x ne ) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1574 minimal-1 : (x : HOD ) → ( ne : ¬ (x == od∅ ) ) → (y : HOD ) → ¬ ( def (minimal x ne) (&amp; y)) ∧ (def x (&amp; y) )
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1575
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1576 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1577 We can avoid this using ε-induction (a predicate is valid on all set if the predicate is true on some element of set).
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1578 Assuming law of exclude middle, they say axiom of regularity will be proved, but we haven't check it yet.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1579 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1580
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1581 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1582 ε-induction : { ψ : HOD → Set (suc n)}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1583 → ( {x : HOD } → ({ y : HOD } → x ∋ y → ψ y ) → ψ x )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1584 → (x : HOD ) → ψ x
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1585
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1586 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1587 In our model, we assumes the mapping between Ordinals and OD, this is actually the TransFinite induction in Ordinals.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1588 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1589 The axiom of choice in the book is complicated using any pair in a set, so we use use a form in the Wikipedia.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1590 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1591
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1592 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1593 ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ]
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1594
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1595 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1596 We can formulate like this.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1597 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1598
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1599 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1600 choice-func : (X : ZFSet ) → {x : ZFSet } → ¬ ( x ≈ ∅ ) → ( X ∋ x ) → ZFSet
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1601 choice : (X : ZFSet ) → {A : ZFSet } → ( X∋A : X ∋ A ) → (not : ¬ ( A ≈ ∅ )) → A ∋ choice-func X not X∋A
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1602
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1603 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1604 It does not requires ∅ ∉ X .
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1605 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1606
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1607 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1608 <h2><a name="content059">Axiom of choice and Law of Excluded Middle</a></h2>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1609 In our model, since HOD has a mapping to Ordinals, it has evident order, which means well ordering theorem is valid,
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1610 but it don't have correct form of the axiom yet. They say well ordering axiom is equivalent to the axiom of choice,
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1611 but it requires law of the exclude middle.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1612 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1613 Actually, it is well known to prove law of the exclude middle from axiom of choice in intuitionistic logic, and we can
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1614 perform the proof in our mode. Using the definition like this, predicates and ODs are related and we can ask the
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1615 set is empty or not if we have an axiom of choice, so we have the law of the exclude middle p ∨ ( ¬ p ) .
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1616 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1617
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1618 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1619 ppp : { p : Set n } { a : HOD } → record { def = λ x → p } ∋ a → p
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1620 ppp {p} {a} d = d
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1621
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1622 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1623 We can prove axiom of choice from law excluded middle since we have TransFinite induction. So Axiom of choice
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1624 and Law of Excluded Middle is equivalent in our mode.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1625 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1626
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1627 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1628 <h2><a name="content060">Relation-ship among ZF axiom</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1629 <img src="fig/axiom-dependency.svg">
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1630
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1631 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1632
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1633 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1634 <h2><a name="content061">Non constructive assumption in our model</a></h2>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1635 mapping between HOD and Ordinals
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1636 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1637
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1638 <pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1639 &amp; : HOD → Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1640 * : Ordinal → OD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1641 oiso : {x : HOD } → * ( &amp; x ) ≡ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1642 diso : {x : Ordinal } → &amp; ( * x ) ≡ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1643 c&lt;→o&lt; : {x y : HOD } → def y ( &amp; x ) → &amp; x o&lt; &amp; y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1644 ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → &amp; y o&lt; osuc (&amp; z)
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1645
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1646 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1647 Equivalence on OD
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1648 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1649
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1650 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1651 ==→o≡ : { x y : HOD } → (od x == od y) → x ≡ y
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1652
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1653 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1654 Upper bound
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1655 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1656
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1657 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1658 sup-o : (A : HOD) → ( ( x : Ordinal ) → def (od A) x → Ordinal ) → Ordinal
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1659 sup-o&lt; : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o&lt; sup-o A ψ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1660
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1661 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1662 In order to have bounded ω,
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1663 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1664
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1665 <pre>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1666 hod-ord&lt; : {x : HOD} → &amp; x o&lt; next (odmax x)
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1667
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1668 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1669 Axiom of choice and strong axiom of regularity.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1670 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1671
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1672 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1673 minimal : (x : HOD ) → ¬ (x =h= od∅ )→ HOD
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1674 x∋minimal : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → odef x ( &amp; ( minimal x ne ) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1675 minimal-1 : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (&amp; y)) ∧ (odef x (&amp; y) )
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1676
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1677 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1678
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1679 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1680 <h2><a name="content062">V </a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1681
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1682 <p>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1683 The cumulative hierarchy
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1684 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1685 V 0 := ∅
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1686 V α + 1 := P ( V α )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1687 V α := ⋃ { V β | β &lt; α }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1688
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1689 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1690 Using TransFinite induction
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1691 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1692
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1693 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1694 V : ( β : Ordinal ) → HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1695 V β = TransFinite V1 β where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1696 V1 : (x : Ordinal ) → ( ( y : Ordinal) → y o&lt; x → HOD ) → HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1697 V1 x V0 with trio&lt; x o∅
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1698 V1 x V0 | tri&lt; a ¬b ¬c = ⊥-elim ( ¬x&lt;0 a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1699 V1 x V0 | tri≈ ¬a refl ¬c = Ord o∅
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1700 V1 x V0 | tri&gt; ¬a ¬b c with Oprev-p x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1701 V1 x V0 | tri&gt; ¬a ¬b c | yes p = Power ( V0 (Oprev.oprev p ) (subst (λ k → _ o&lt; k) (Oprev.oprev=x p) &lt;-osuc ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1702 V1 x V0 | tri&gt; ¬a ¬b c | no ¬p =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1703 record { od = record { def = λ y → (y o&lt; x ) ∧ ((lt : y o&lt; x ) → odef (V0 y lt) x ) } ;
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1704 odmax = x; &lt;odmax = λ {x} lt → proj1 lt }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1705
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1706 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1707 In our system, clearly V ⊆ HOD。
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1708 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1709
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1710 <hr/>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1711 <h2><a name="content063">L</a></h2>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1712 The constructible Sets
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1713 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1714 L 0 := ∅
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1715 L α + 1 := Df (L α) -- Definable Power Set
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1716 V α := ⋃ { L β | β &lt; α }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1717
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1718 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1719 What is Df? In our system, Power x is definable by Sup.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1720 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1721
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1722 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1723 record Definitions : Set (suc n) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1724 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1725 Definition : HOD → HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1726 open Definitions
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1727 Df : Definitions → (x : HOD) → HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1728 Df D x = Power x ∩ Definition D x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1729
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1730 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1731
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1732 <hr/>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1733 <h2><a name="content064">L</a></h2>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1734
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1735 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1736
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1737 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1738 L : ( β : Ordinal ) → Definitions → HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1739 L β D = TransFinite L1 β where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1740 L1 : (x : Ordinal ) → ( ( y : Ordinal) → y o&lt; x → HOD ) → HOD
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1741 L1 x L0 with trio&lt; x o∅
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1742 L1 x L0 | tri&lt; a ¬b ¬c = ⊥-elim ( ¬x&lt;0 a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1743 L1 x L0 | tri≈ ¬a refl ¬c = Ord o∅
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1744 L1 x L0 | tri&gt; ¬a ¬b c with Oprev-p x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1745 L1 x L0 | tri&gt; ¬a ¬b c | yes p = Df D ( L0 (Oprev.oprev p ) (subst (λ k → _ o&lt; k) (Oprev.oprev=x p) &lt;-osuc ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1746 L1 x L0 | tri&gt; ¬a ¬b c | no ¬p =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1747 record { od = record { def = λ y → (y o&lt; x ) ∧ ((lt : y o&lt; x ) → odef (L0 y lt) x ) } ;
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1748 odmax = x; &lt;odmax = λ {x} lt → proj1 lt }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1749
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1750 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1751
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1752 <hr/>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1753 <h2><a name="content065">V=L</a></h2>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1754
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1755 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1756
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1757 <pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1758 V=L0 : Set (suc n)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1759 V=L0 = (x : Ordinal) → V x ≡ L x record { Definition = λ y → y }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1760
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1761 </pre>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1762 is obvious. Definitions should have some restrictions, such as it includes Nat.
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1763 <p>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1764
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1765 <hr/>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1766 <h2><a name="content066">Some other ...</a></h2>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1767
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1768 <hr/>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1769 <h2><a name="content067">So it this correct?</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1770 Our axiom are syntactically the same in the text book, but negations are slightly different.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1771 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1772 If we assumes excluded middle, these are exactly same.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1773 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1774 Even if we assumes excluded middle, intuitionistic logic itself remains consistent, but we cannot prove it.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1775 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1776 Except the upper bound, axioms are simple logical relation.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1777 <p>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1778 Proof of existence of mapping between HOD and Ordinals are not obvious. We don't know we prove it or not.
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1779 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1780 Existence of the Upper bounds is a pure assumption, if we have not limit on Ordinals, it may contradicts,
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1781 but we don't have explicit upper limit on Ordinals.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1782 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1783 Several inference on our model or our axioms are basically parallel to the set theory text book, so it looks like correct.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1784 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1785
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1786 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1787 <h2><a name="content068">How to use Agda Set Theory</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1788 Assuming record ZF, classical set theory can be developed. If necessary, axiom of choice can be
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1789 postulated or assuming law of excluded middle.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1790 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1791 Instead, simply assumes non constructive assumption, various theory can be developed. We haven't check
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1792 these assumptions are proved in record ZF, so we are not sure, these development is a result of ZF Set theory.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1793 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1794 ZF record itself is not necessary, for example, topology theory without ZF can be possible.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1795 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1796
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1797 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1798 <h2><a name="content069">Topos and Set Theory</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1799 Topos is a mathematical structure in Category Theory, which is a Cartesian closed category which has a
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1800 sub-object classifier.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1801 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1802 Topos itself is model of intuitionistic logic.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1803 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1804 Transitive Sets are objects of Cartesian closed category.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1805 It is possible to introduce Power Set Functor on it
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1806 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1807 We can use replacement A ∩ x for each element in Transitive Set,
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1808 in the similar way of our power set axiom. I
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1809 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1810 A model of ZF Set theory can be constructed on top of the Topos which is shown in Oisus.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1811 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1812 Our Agda model is a proof theoretic version of it.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1813 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1814
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1815 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1816 <h2><a name="content070">Cardinal number and Continuum hypothesis</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1817 Axiom of choice is required to define cardinal number
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1818 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1819 definition of cardinal number is not yet done
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1820 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1821 definition of filter is not yet done
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1822 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1823 we may have a model without axiom of choice or without continuum hypothesis
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1824 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1825 Possible representation of continuum hypothesis is this.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1826 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1827
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1828 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1829 continuum-hyphotheis : (a : Ordinal) → Power (Ord a) ⊆ Ord (osuc a)
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1830
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1831 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1832
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1833 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1834 <h2><a name="content071">Filter</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1835
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1836 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1837 filter is a dual of ideal on boolean algebra or lattice. Existence on natural number
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1838 is depends on axiom of choice.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1839 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1840
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1841 <pre>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1842 record Filter ( L : HOD ) : Set (suc n) where
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1843 field
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1844 filter : OD
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1845 proper : ¬ ( filter ∋ od∅ )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1846 inL : filter ⊆ L
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1847 filter1 : { p q : HOD } → q ⊆ L → filter ∋ p → p ⊆ q → filter ∋ q
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1848 filter2 : { p q : HOD } → filter ∋ p → filter ∋ q → filter ∋ (p ∩ q)
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1849
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1850 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1851 We may construct a model of non standard analysis or set theory.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1852 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1853 This may be simpler than classical forcing theory ( not yet done).
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1854 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1855
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1856 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1857 <h2><a name="content072">Programming Mathematics</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1858 Mathematics is a functional programming in Agda where proof is a value of a variable. The mathematical
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1859 structure are
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1860 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1861
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1862 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1863 record and data
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1864
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1865 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1866 Proof is check by type consistency not by the computation, but it may include some normalization.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1867 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1868 Type inference and termination is not so clear in multi recursions.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1869 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1870 Defining Agda record is a good way to understand mathematical theory, for examples,
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1871 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1872
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1873 <pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1874 Category theory ( Yoneda lemma, Floyd Adjunction functor theorem, Applicative functor )
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1875 Automaton ( Subset construction、Language containment)
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1876
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1877 </pre>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1878 are proved in Agda.
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1879 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1880
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1881 <hr/>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1882 <h2><a name="content073">link</a></h2>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1883 Summer school of foundation of mathematics (in Japanese)<br> <a href="https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/">https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/</a>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1884 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1885 Foundation of axiomatic set theory (in Japanese)<br> <a href="https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/sakai0.pdf">https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/sakai0.pdf
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1886 </a>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1887 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1888 Agda
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1889 <br> <a href="https://agda.readthedocs.io/en/v2.6.0.1/">https://agda.readthedocs.io/en/v2.6.0.1/</a>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1890 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1891 ZF-in-Agda source
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1892 <br> <a href="https://github.com/shinji-kono/zf-in-agda.git">https://github.com/shinji-kono/zf-in-agda.git
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1893 </a>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1894 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1895 Category theory in Agda source
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1896 <br> <a href="https://github.com/shinji-kono/category-exercise-in-agda">https://github.com/shinji-kono/category-exercise-in-agda
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1897 </a>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1898 <p>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1899 </div>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1900 <ol class="side" id="menu">
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1901 Constructing ZF Set Theory in Agda
279
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
1902 <li><a href="#content000"> ZF in Agda</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
1903 <li><a href="#content001"> Programming Mathematics</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
1904 <li><a href="#content002"> Target</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
1905 <li><a href="#content003"> Why Set Theory</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
1906 <li><a href="#content004"> Agda and Intuitionistic Logic </a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
1907 <li><a href="#content005"> Introduction of Agda </a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
1908 <li><a href="#content006"> data ( Sum type )</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
1909 <li><a href="#content007"> A → B means "A implies B"</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
1910 <li><a href="#content008"> introduction と elimination</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
1911 <li><a href="#content009"> To prove A → B </a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
1912 <li><a href="#content010"> A ∧ B</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
1913 <li><a href="#content011"> record</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 273
diff changeset
1914 <li><a href="#content012"> Mathematical structure</a>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1915 <li><a href="#content013"> Limit Ordinal</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1916 <li><a href="#content014"> A Model and a theory</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1917 <li><a href="#content015"> postulate と module</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1918 <li><a href="#content016"> A ∨ B</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1919 <li><a href="#content017"> Negation</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1920 <li><a href="#content018"> Equality </a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1921 <li><a href="#content019"> Equivalence relation</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1922 <li><a href="#content020"> Ordering</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1923 <li><a href="#content021"> Quantifier</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1924 <li><a href="#content022"> Can we do math in this way?</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1925 <li><a href="#content023"> Things which Agda cannot prove</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1926 <li><a href="#content024"> Classical story of ZF Set Theory</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1927 <li><a href="#content025"> Ordinals</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1928 <li><a href="#content026"> Axiom of Ordinals</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1929 <li><a href="#content027"> Concrete Ordinals or Countable Ordinals</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1930 <li><a href="#content028"> Model of Ordinals</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1931 <li><a href="#content029"> Debugging axioms using Model</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1932 <li><a href="#content030"> Countable Ordinals can contains uncountable set?</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1933 <li><a href="#content031"> What is Set</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1934 <li><a href="#content032"> We don't ask the contents of Set. It can be anything.</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1935 <li><a href="#content033"> Ordinal Definable Set</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1936 <li><a href="#content034"> OD is not ZF Set</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1937 <li><a href="#content035"> HOD : Hereditarily Ordinal Definable</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1938 <li><a href="#content036"> 1 to 1 mapping between an HOD and an Ordinal</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1939 <li><a href="#content037"> Order preserving in the mapping of OD and Ordinal</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1940 <li><a href="#content038"> Various Sets</a>
361
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 359
diff changeset
1941 <li><a href="#content039"> Fixing ZF axom to fit intuitionistic logic</a>
359
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1942 <li><a href="#content040"> Pure logical axioms</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1943 <li><a href="#content041"> Axiom of Pair</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1944 <li><a href="#content042"> pair in OD</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1945 <li><a href="#content043"> Validity of Axiom of Pair</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 338
diff changeset
1946 <li><a href="#content044"> Equality of OD and Axiom of Extensionality </a>
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1947 <li><a href="#content045"> The uniqueness of HOD</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1948 <li><a href="#content046"> Validity of Axiom of Extensionality</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1949 <li><a href="#content047"> Axiom of infinity</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1950 <li><a href="#content048"> ω in HOD</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1951 <li><a href="#content049"> HOD and Agda data structure</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1952 <li><a href="#content050"> HOD Ordrinal mapping</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1953 <li><a href="#content051"> Possible restriction on HOD</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1954 <li><a href="#content052"> increment pase of address of HOD</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1955 <li><a href="#content053"> Non constructive assumptions so far</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1956 <li><a href="#content054"> Axiom which have negation form</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1957 <li><a href="#content055"> Union </a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1958 <li><a href="#content056"> Axiom of replacement</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1959 <li><a href="#content057"> Validity of Power Set Axiom</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1960 <li><a href="#content058"> Axiom of regularity, Axiom of choice, ε-induction</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1961 <li><a href="#content059"> Axiom of choice and Law of Excluded Middle</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1962 <li><a href="#content060"> Relation-ship among ZF axiom</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1963 <li><a href="#content061"> Non constructive assumption in our model</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1964 <li><a href="#content062"> V </a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1965 <li><a href="#content063"> L</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1966 <li><a href="#content064"> L</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1967 <li><a href="#content065"> V=L</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1968 <li><a href="#content066"> Some other ...</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1969 <li><a href="#content067"> So it this correct?</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1970 <li><a href="#content068"> How to use Agda Set Theory</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1971 <li><a href="#content069"> Topos and Set Theory</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1972 <li><a href="#content070"> Cardinal number and Continuum hypothesis</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1973 <li><a href="#content071"> Filter</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1974 <li><a href="#content072"> Programming Mathematics</a>
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1975 <li><a href="#content073"> link</a>
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1976 </ol>
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1977
425
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 361
diff changeset
1978 <hr/> Shinji KONO / Tue Aug 4 18:09:41 2020
273
9ccf8514c323 add documents
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1979 </body></html>