Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate Todo @ 224:afc864169325
recover ε-induction
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 10 Aug 2019 12:31:25 +0900 |
parents | ac872f6b8692 |
children | bca043423554 |
rev | line source |
---|---|
187 | 1 Tue Jul 23 11:02:50 JST 2019 |
2 | |
3 define cardinals | |
4 prove CH in OD→ZF | |
5 define Ultra filter | |
6 define L M : ZF ZFSet = M is an OD | |
7 define L N : ZF ZFSet = N = G M (G is a generic fitler on M ) | |
8 prove ¬ CH on L N | |
9 prove no choice function on L N | |
10 | |
148 | 11 Mon Jul 8 19:43:37 JST 2019 |
12 | |
13 ordinal-definable.agda assumes all ZF Set are ordinals, that it too restrictive | |
14 | |
15 remove ord-Ord and prove with some assuption in HOD.agda | |
16 union, power set, replace, inifinite |