comparison src/zorn.agda @ 841:01361e10ad96

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 29 Aug 2022 19:56:39 +0900
parents 52bff0b4cb37
children 962a9f3dbd3c
comparison
equal deleted inserted replaced
840:52bff0b4cb37 841:01361e10ad96
769 ; chain⊆A = λ lt → proj1 lt ; f-next = pnext1 ; f-total = ptotal1 } where 769 ; chain⊆A = λ lt → proj1 lt ; f-next = pnext1 ; f-total = ptotal1 } where
770 pchain0=1 : pchain ≡ pchain1 770 pchain0=1 : pchain ≡ pchain1
771 pchain0=1 = ==→o≡ record { eq→ = zc10 ; eq← = zc11 } where 771 pchain0=1 = ==→o≡ record { eq→ = zc10 ; eq← = zc11 } where
772 zc10 : {z : Ordinal} → OD.def (od pchain) z → OD.def (od pchain1) z 772 zc10 : {z : Ordinal} → OD.def (od pchain) z → OD.def (od pchain1) z
773 zc10 {z} ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ 773 zc10 {z} ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫
774 zc10 {z} ⟪ az , ch-is-sup u u≤px is-sup fc ⟫ = zc12 fc where 774 zc10 {z} ⟪ az , ch-is-sup u1 u1≤x u1-is-sup fc ⟫ = zc12 fc where
775 zc12 : {z : Ordinal} → FClosure A f (supf0 u) z → odef pchain1 z 775 zc12 : {z : Ordinal} → FClosure A f (supf0 u1) z → odef pchain1 z
776 zc12 (fsuc x fc) with zc12 fc 776 zc12 (fsuc x fc) with zc12 fc
777 ... | ⟪ ua1 , ch-init fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-init (fsuc _ fc₁) ⟫ 777 ... | ⟪ ua1 , ch-init fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-init (fsuc _ fc₁) ⟫
778 ... | ⟪ ua1 , ch-is-sup u u≤x is-sup fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-is-sup u u≤x is-sup (fsuc _ fc₁) ⟫ 778 ... | ⟪ ua1 , ch-is-sup u u≤x u1-is-sup fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-is-sup u u≤x u1-is-sup (fsuc _ fc₁) ⟫
779 zc12 (init asu su=z ) with trio< u px 779 zc12 (init asp refl ) with trio< u1 px | inspect supf1 u1
780 ... | tri< a ¬b ¬c = ⟪ subst (λ k → odef A k) su=z asu , ch-is-sup u (ordtrans u≤px (osucc (pxo<x op)) ) 780 ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x ? )
781 record { fcy<sup = ? ; order = ? ; supu=u = ? } (init ? ? ) ⟫ 781 record { fcy<sup = fcy<sup ; order = order ; supu=u = trans eq1 (ChainP.supu=u u1-is-sup) } (init (subst (λ k → odef A k ) (sym eq1) asp) eq1 ) ⟫ where
782 ... | tri≈ ¬a b ¬c = ? 782 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 u1) ∨ (z << supf1 u1 )
783 ... | tri> ¬a ¬b c = ? 783 fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (sym eq1) ( ChainP.fcy<sup u1-is-sup fc )
784 order : {s : Ordinal} {z2 : Ordinal} → supf1 s o< supf1 u1 → FClosure A f (supf1 s) z2 →
785 (z2 ≡ supf1 u1) ∨ (z2 << supf1 u1)
786 order {s} {z2} s<u1 fc with trio< s px
787 ... | tri< a ¬b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup ? fc )
788 ... | tri≈ ¬a b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup ? fc )
789 ... | tri> ¬a ¬b px<s = ⊥-elim ( o<¬≡ refl (ordtrans px<s ? )) -- px o< s < u1 < px
790 ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x ? )
791 record { fcy<sup = fcy<sup ; order = order ; supu=u = trans eq1 (ChainP.supu=u u1-is-sup) } (init (subst (λ k → odef A k ) (sym eq1) asp) eq1 ) ⟫ where
792 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 u1) ∨ (z << supf1 u1 )
793 fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (sym eq1) ( ChainP.fcy<sup u1-is-sup fc )
794 order : {s : Ordinal} {z2 : Ordinal} → supf1 s o< supf1 u1 → FClosure A f (supf1 s) z2 →
795 (z2 ≡ supf1 u1) ∨ (z2 << supf1 u1)
796 order {s} {z2} s<u1 fc with trio< s px
797 ... | tri< a ¬b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup ? fc )
798 ... | tri≈ ¬a b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup ? fc )
799 ... | tri> ¬a ¬b px<s = ⊥-elim ( o<¬≡ refl (ordtrans px<s (subst (λ k → s o< k) b ? ) )) -- px o< s < u1 = px
800 ... | tri> ¬a ¬b px<u1 | record { eq = eq1 } with osuc-≡< u1≤x
801 ... | case1 eq = ⊥-elim ( o<¬≡ (sym eq) px<u1 )
802 ... | case2 lt = ⊥-elim ( o<> lt px<u1 )
803
784 zc11 : {z : Ordinal} → OD.def (od pchain1) z → OD.def (od pchain) z 804 zc11 : {z : Ordinal} → OD.def (od pchain1) z → OD.def (od pchain) z
785 zc11 {z} ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ 805 zc11 {z} ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫
786 zc11 {z} ⟪ az , ch-is-sup u u≤x is-sup fc ⟫ = zc13 fc where 806 zc11 {z} ⟪ az , ch-is-sup u1 u1≤x u1-is-sup fc ⟫ = zc13 fc where
787 zc13 : {z : Ordinal} → FClosure A f (supf1 u) z → odef pchain z 807 zc13 : {z : Ordinal} → FClosure A f (supf1 u1) z → odef pchain z
788 zc13 (fsuc x fc) with zc13 fc 808 zc13 (fsuc x fc) with zc13 fc
789 ... | ⟪ ua1 , ch-init fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-init (fsuc _ fc₁) ⟫ 809 ... | ⟪ ua1 , ch-init fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-init (fsuc _ fc₁) ⟫
790 ... | ⟪ ua1 , ch-is-sup u u≤x is-sup fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-is-sup u u≤x is-sup (fsuc _ fc₁) ⟫ 810 ... | ⟪ ua1 , ch-is-sup u u≤x is-sup fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-is-sup u u≤x is-sup (fsuc _ fc₁) ⟫
791 zc13 (init asu su=z ) with trio< u x 811 zc13 (init asp refl ) with trio< u1 px | inspect supf1 u1
792 ... | tri< a ¬b ¬c = ⟪ subst (λ k → odef A k) su=z asu , ch-is-sup u (subst (λ k → u o< k) (sym (Oprev.oprev=x op)) a) ? (init ? ? ) ⟫ 812 ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (subst (λ k → u1 o< k ) ? a )
793 ... | tri≈ ¬a b ¬c = ? 813 record { fcy<sup = fcy<sup ; order = order ; supu=u = trans ? (ChainP.supu=u u1-is-sup) } (init ? ?) ⟫ where
794 ... | tri> ¬a ¬b c = ⊥-elim ( o≤> u≤x c ) 814 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf0 u1) ∨ (z << supf0 u1 )
815 fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) ? ( ChainP.fcy<sup u1-is-sup fc )
816 order : {s : Ordinal} {z2 : Ordinal} → supf0 s o< supf0 u1 → FClosure A f (supf0 s) z2 →
817 (z2 ≡ supf0 u1) ∨ (z2 << supf0 u1)
818 order {s} {z2} s<u1 fc with trio< s px | inspect supf1 s
819 ... | tri< a ¬b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) ? ( ChainP.order u1-is-sup ? (subst (λ k → FClosure A f k z2) (sym eq2) fc ))
820 ... | tri≈ ¬a b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) ? ( ChainP.order u1-is-sup ? (subst (λ k → FClosure A f k z2) (sym eq2) fc ))
821 ... | tri> ¬a ¬b px<s | record { eq = eq2 } = ⊥-elim ( o<¬≡ refl (ordtrans px<s ? )) -- px o< s < u1 < px
822 ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x ? )
823 record { fcy<sup = fcy<sup ; order = order ; supu=u = trans (sym ?) (ChainP.supu=u u1-is-sup) } (init ? ? ) ⟫ where
824 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf0 u1) ∨ (z << supf0 u1 )
825 fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) ? ( ChainP.fcy<sup u1-is-sup fc )
826 order : {s : Ordinal} {z2 : Ordinal} → supf0 s o< supf0 u1 → FClosure A f (supf0 s) z2 →
827 (z2 ≡ supf0 u1) ∨ (z2 << supf0 u1)
828 order {s} {z2} s<u1 fc with trio< s px | inspect supf1 s
829 ... | tri< a ¬b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) ? ( ChainP.order u1-is-sup ? (subst (λ k → FClosure A f k z2) (sym eq2) fc ))
830 ... | tri≈ ¬a b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) ? ( ChainP.order u1-is-sup ? (subst (λ k → FClosure A f k z2) (sym eq2) fc ))
831 ... | tri> ¬a ¬b px<s | _ = ⊥-elim ( o<¬≡ refl (ordtrans px<s ? )) -- px o< s < u1 = px
832 ... | tri> ¬a ¬b c | _ = ⊥-elim ( o≤> u1≤x ? )
795 sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf1 z) 833 sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf1 z)
796 sup {z} z≤x with trio< z px | inspect supf1 z 834 sup {z} z≤x with trio< z px | inspect supf1 z
797 ... | tri< a ¬b ¬c | record { eq = eq1} = ? -- ZChain.sup zc (o<→≤ a) 835 ... | tri< a ¬b ¬c | record { eq = eq1} = ? -- ZChain.sup zc (o<→≤ a)
798 ... | tri≈ ¬a b ¬c | record { eq = eq1} = ? -- ZChain.sup zc (o≤-refl0 b) 836 ... | tri≈ ¬a b ¬c | record { eq = eq1} = ? -- ZChain.sup zc (o≤-refl0 b)
799 ... | tri> ¬a ¬b px<z | record { eq = eq1} = record { sup = SUP.sup sup1 ; as = SUP.as sup1 ; x<sup = zc31 } where 837 ... | tri> ¬a ¬b px<z | record { eq = eq1} = record { sup = SUP.sup sup1 ; as = SUP.as sup1 ; x<sup = zc31 } where
825 zc30 with osuc-≡< b≤x 863 zc30 with osuc-≡< b≤x
826 ... | case1 eq = sym (eq) 864 ... | case1 eq = sym (eq)
827 ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) 865 ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ )
828 sis : {z : Ordinal} (z≤x : z o≤ x) → supf1 z ≡ & (SUP.sup (sup z≤x)) 866 sis : {z : Ordinal} (z≤x : z o≤ x) → supf1 z ≡ & (SUP.sup (sup z≤x))
829 sis {z} z≤x = zc40 where 867 sis {z} z≤x = zc40 where
830 zc40 : supf1 z ≡ & (SUP.sup (sup z≤x)) 868 zc40 : supf1 z ≡ & (SUP.sup (sup z≤x)) -- direct with statment causes error
831 zc40 with trio< z px | inspect supf1 z | inspect sup z≤x 869 zc40 with trio< z px | inspect supf1 z | inspect sup z≤x
832 ... | tri< a ¬b ¬c | record { eq = eq1 } | record { eq = eq2 } = ? 870 ... | tri< a ¬b ¬c | record { eq = eq1 } | record { eq = eq2 } = ?
833 ... | tri≈ ¬a b ¬c | record { eq = eq1 } | record { eq = eq2 } = ? 871 ... | tri≈ ¬a b ¬c | record { eq = eq1 } | record { eq = eq2 } = ?
834 ... | tri> ¬a ¬b c | record { eq = eq1 } | record { eq = eq2 } = ? 872 ... | tri> ¬a ¬b c | record { eq = eq1 } | record { eq = eq2 } = ?
835 -- ... | tri< a ¬b ¬c = ? -- jZChain.supf-is-sup zc (o<→≤ a )
836 -- ... | tri≈ ¬a b ¬c = ? -- jZChain.supf-is-sup zc (o≤-refl0 b )
837 -- ... | tri> ¬a ¬b px<z = ?
838 -- ... | tri< a ¬b ¬c | _ = ? -- jZChain.supf-is-sup zc (o<→≤ a )
839 -- ... | tri≈ ¬a b ¬c | _ = ? -- jZChain.supf-is-sup zc (o≤-refl0 b )
840 -- ... | tri> ¬a ¬b px<z | record { eq = eq1 } = ? where
841 -- zc30 : z ≡ x
842 -- zc30 with osuc-≡< z≤x
843 -- ... | case1 eq = eq
844 -- ... | case2 z<x = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) z<x ⟫ )
845 873
846 zc4 : ZChain A f mf ay x 874 zc4 : ZChain A f mf ay x
847 zc4 with ODC.∋-p O A (* x) 875 zc4 with ODC.∋-p O A (* x)
848 ... | no noax = no-extension {!!} -- ¬ A ∋ p, just skip 876 ... | no noax = no-extension {!!} -- ¬ A ∋ p, just skip
849 ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain.chain zc ) x f ) 877 ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain.chain zc ) x f )