comparison src/zorn.agda @ 995:04f4baee7b68

UChain is now u o< x
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 17 Nov 2022 08:36:03 +0900
parents a15f1cddf4c6
children 61d74b3d5456
comparison
equal deleted inserted replaced
994:a15f1cddf4c6 995:04f4baee7b68
278 supu=u : supf u ≡ u 278 supu=u : supf u ≡ u
279 279
280 data UChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y ) 280 data UChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) {y : Ordinal } (ay : odef A y )
281 (supf : Ordinal → Ordinal) (x : Ordinal) : (z : Ordinal) → Set n where 281 (supf : Ordinal → Ordinal) (x : Ordinal) : (z : Ordinal) → Set n where
282 ch-init : {z : Ordinal } (fc : FClosure A f y z) → UChain A f mf ay supf x z 282 ch-init : {z : Ordinal } (fc : FClosure A f y z) → UChain A f mf ay supf x z
283 ch-is-sup : (u : Ordinal) {z : Ordinal } (u<x : supf u o< supf x) ( is-sup : ChainP A f mf ay supf u ) 283 ch-is-sup : (u : Ordinal) {z : Ordinal } (u<x : u o< x) ( is-sup : ChainP A f mf ay supf u )
284 ( fc : FClosure A f (supf u) z ) → UChain A f mf ay supf x z 284 ( fc : FClosure A f (supf u) z ) → UChain A f mf ay supf x z
285 285
286 -- 286 --
287 -- f (f ( ... (supf y))) f (f ( ... (supf z1))) 287 -- f (f ( ... (supf y))) f (f ( ... (supf z1)))
288 -- / | / | 288 -- / | / |
420 (supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y ) {a b c : Ordinal} → a o≤ b 420 (supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y ) {a b c : Ordinal} → a o≤ b
421 → odef (UnionCF A f mf ay supf a) c → odef (UnionCF A f mf ay supf b) c 421 → odef (UnionCF A f mf ay supf a) c → odef (UnionCF A f mf ay supf b) c
422 chain-mono f mf ay supf supf-mono {a} {b} {c} a≤b ⟪ ua , ch-init fc ⟫ = 422 chain-mono f mf ay supf supf-mono {a} {b} {c} a≤b ⟪ ua , ch-init fc ⟫ =
423 ⟪ ua , ch-init fc ⟫ 423 ⟪ ua , ch-init fc ⟫
424 chain-mono f mf ay supf supf-mono {a} {b} {c} a≤b ⟪ uaa , ch-is-sup ua ua<x is-sup fc ⟫ = 424 chain-mono f mf ay supf supf-mono {a} {b} {c} a≤b ⟪ uaa , ch-is-sup ua ua<x is-sup fc ⟫ =
425 ⟪ uaa , ch-is-sup ua (ordtrans<-≤ ua<x (supf-mono a≤b ) ) is-sup fc ⟫ 425 ⟪ uaa , ch-is-sup ua (ordtrans<-≤ ua<x a≤b) is-sup fc ⟫
426 426
427 record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) 427 record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f)
428 {y : Ordinal} (ay : odef A y) ( z : Ordinal ) : Set (Level.suc n) where 428 {y : Ordinal} (ay : odef A y) ( z : Ordinal ) : Set (Level.suc n) where
429 field 429 field
430 supf : Ordinal → Ordinal 430 supf : Ordinal → Ordinal
520 → (supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y ) 520 → (supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y )
521 → ( { x : Ordinal } → x o< z → supf x ≡ supf1 x) 521 → ( { x : Ordinal } → x o< z → supf x ≡ supf1 x)
522 → ( { x : Ordinal } → z o≤ x → supf z o≤ supf1 x) 522 → ( { x : Ordinal } → z o≤ x → supf z o≤ supf1 x)
523 → UnionCF A f mf ay supf z ⊆' UnionCF A f mf ay supf1 z 523 → UnionCF A f mf ay supf z ⊆' UnionCF A f mf ay supf1 z
524 UChain⊆ A f mf {z} {y} ay {supf} {supf1} supf-mono eq<x lex ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ 524 UChain⊆ A f mf {z} {y} ay {supf} {supf1} supf-mono eq<x lex ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫
525 UChain⊆ A f mf {z} {y} ay {supf} {supf1} supf-mono eq<x lex ⟪ az , ch-is-sup u {x} u<x is-sup fc ⟫ = ⟪ az , ch-is-sup u u<x1 cp1 fc1 ⟫ where 525 UChain⊆ A f mf {z} {y} ay {supf} {supf1} supf-mono eq<x lex ⟪ az , ch-is-sup u {x} u<x is-sup fc ⟫ = ⟪ az , ch-is-sup u u<x cp1 fc1 ⟫ where
526 u<x0 : u o< z
527 u<x0 = supf-inject0 supf-mono u<x
528 u<x1 : supf1 u o< supf1 z
529 u<x1 = subst (λ k → k o< supf1 z ) (eq<x u<x0) (ordtrans<-≤ u<x (lex o≤-refl ) )
530 fc1 : FClosure A f (supf1 u) x 526 fc1 : FClosure A f (supf1 u) x
531 fc1 = subst (λ k → FClosure A f k x ) (eq<x u<x0) fc 527 fc1 = subst (λ k → FClosure A f k x ) (eq<x u<x) fc
528 supf1-mono : {x y : Ordinal } → x o≤ y → supf1 x o≤ supf1 y
529 supf1-mono = ?
532 uc01 : {s : Ordinal } → supf1 s o< supf1 u → s o< z 530 uc01 : {s : Ordinal } → supf1 s o< supf1 u → s o< z
533 uc01 {s} s<u with trio< s z 531 uc01 {s} s<u with trio< s z
534 ... | tri< a ¬b ¬c = a 532 ... | tri< a ¬b ¬c = a
535 ... | tri≈ ¬a b ¬c = ⊥-elim ( o≤> uc02 s<u ) where -- (supf-mono (o<→≤ u<x0)) 533 ... | tri≈ ¬a b ¬c = ⊥-elim ( o≤> uc02 s<u ) where -- (supf-mono (o<→≤ u<x0))
536 uc02 : supf1 u o≤ supf1 s 534 uc02 : supf1 u o≤ supf1 s
537 uc02 = begin 535 uc02 = begin
538 supf1 u <⟨ u<x1 ⟩ 536 supf1 u ≤⟨ supf1-mono (o<→≤ u<x) ⟩
539 supf1 z ≡⟨ cong supf1 (sym b) ⟩ 537 supf1 z ≡⟨ cong supf1 (sym b) ⟩
540 supf1 s ∎ where open o≤-Reasoning O 538 supf1 s ∎ where open o≤-Reasoning O
541 ... | tri> ¬a ¬b c = ⊥-elim ( o≤> uc03 s<u ) where 539 ... | tri> ¬a ¬b c = ⊥-elim ( o≤> uc03 s<u ) where
542 uc03 : supf1 u o≤ supf1 s 540 uc03 : supf1 u o≤ supf1 s
543 uc03 = begin 541 uc03 = begin
544 supf1 u ≡⟨ sym (eq<x u<x0) ⟩ 542 supf1 u ≡⟨ sym (eq<x u<x) ⟩
545 supf u <⟨ u<x ⟩ 543 supf u ≤⟨ supf-mono (o<→≤ u<x) ⟩
546 supf z ≤⟨ lex (o<→≤ c) ⟩ 544 supf z ≤⟨ lex (o<→≤ c) ⟩
547 supf1 s ∎ where open o≤-Reasoning O 545 supf1 s ∎ where open o≤-Reasoning O
548 cp1 : ChainP A f mf ay supf1 u 546 cp1 : ChainP A f mf ay supf1 u
549 cp1 = record { fcy<sup = λ {z} fc → subst (λ k → (z ≡ k) ∨ ( z << k ) ) (eq<x u<x0) (ChainP.fcy<sup is-sup fc ) 547 cp1 = record { fcy<sup = λ {z} fc → subst (λ k → (z ≡ k) ∨ ( z << k ) ) (eq<x u<x) (ChainP.fcy<sup is-sup fc )
550 ; order = λ {s} {z} s<u fc → subst (λ k → (z ≡ k) ∨ ( z << k ) ) (eq<x u<x0) 548 ; order = λ {s} {z} s<u fc → subst (λ k → (z ≡ k) ∨ ( z << k ) ) (eq<x u<x)
551 (ChainP.order is-sup (subst₂ (λ j k → j o< k ) (sym (eq<x (uc01 s<u) )) (sym (eq<x u<x0)) s<u) 549 (ChainP.order is-sup (subst₂ (λ j k → j o< k ) (sym (eq<x (uc01 s<u) )) (sym (eq<x u<x)) s<u)
552 (subst (λ k → FClosure A f k z ) (sym (eq<x (uc01 s<u) )) fc )) 550 (subst (λ k → FClosure A f k z ) (sym (eq<x (uc01 s<u) )) fc ))
553 ; supu=u = trans (sym (eq<x u<x0)) (ChainP.supu=u is-sup) } 551 ; supu=u = trans (sym (eq<x u<x)) (ChainP.supu=u is-sup) }
554 552
555 record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f) 553 record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f)
556 {y : Ordinal} (ay : odef A y) (zc : ZChain A f mf ay (& A)) ( z : Ordinal ) : Set (Level.suc n) where 554 {y : Ordinal} (ay : odef A y) (zc : ZChain A f mf ay (& A)) ( z : Ordinal ) : Set (Level.suc n) where
557 supf = ZChain.supf zc 555 supf = ZChain.supf zc
558 field 556 field
700 zc04 : odef (UnionCF A f mf ay supf (& A)) (supf s) 698 zc04 : odef (UnionCF A f mf ay supf (& A)) (supf s)
701 zc04 = ZChain.csupf zc (ordtrans<-≤ ss<sb (ZChain.supf-mono zc (o<→≤ b<z))) 699 zc04 = ZChain.csupf zc (ordtrans<-≤ ss<sb (ZChain.supf-mono zc (o<→≤ b<z)))
702 zc05 : odef (UnionCF A f mf ay supf b) (supf s) 700 zc05 : odef (UnionCF A f mf ay supf b) (supf s)
703 zc05 with zc04 701 zc05 with zc04
704 ... | ⟪ as , ch-init fc ⟫ = ⟪ as , ch-init fc ⟫ 702 ... | ⟪ as , ch-init fc ⟫ = ⟪ as , ch-init fc ⟫
705 ... | ⟪ as , ch-is-sup u u<x is-sup fc ⟫ = ⟪ as , ch-is-sup u zc08 is-sup fc ⟫ where 703 ... | ⟪ as , ch-is-sup u u<x is-sup fc ⟫ = ⟪ as , ch-is-sup u (ZChain.supf-inject zc zc08) is-sup fc ⟫ where
706 zc07 : FClosure A f (supf u) (supf s) -- supf u ≤ supf s → supf u o≤ supf s 704 zc07 : FClosure A f (supf u) (supf s) -- supf u ≤ supf s → supf u o≤ supf s
707 zc07 = fc 705 zc07 = fc
708 zc06 : supf u ≡ u 706 zc06 : supf u ≡ u
709 zc06 = ChainP.supu=u is-sup 707 zc06 = ChainP.supu=u is-sup
710 zc08 : supf u o< supf b 708 zc08 : supf u o< supf b
733 HasPrev A (UnionCF A f mf ay supf x) f b ∨ IsSUP A (UnionCF A f mf ay supf b) ab → 731 HasPrev A (UnionCF A f mf ay supf x) f b ∨ IsSUP A (UnionCF A f mf ay supf b) ab →
734 * a < * b → odef (UnionCF A f mf ay supf x) b 732 * a < * b → odef (UnionCF A f mf ay supf x) b
735 is-max {a} {b} ua b<x ab P a<b with ODC.or-exclude O P 733 is-max {a} {b} ua b<x ab P a<b with ODC.or-exclude O P
736 is-max {a} {b} ua b<x ab P a<b | case1 has-prev = is-max-hp x {a} {b} ua ab has-prev a<b 734 is-max {a} {b} ua b<x ab P a<b | case1 has-prev = is-max-hp x {a} {b} ua ab has-prev a<b
737 is-max {a} {b} ua b<x ab P a<b | case2 is-sup with osuc-≡< (ZChain.supf-mono zc (o<→≤ b<x)) 735 is-max {a} {b} ua b<x ab P a<b | case2 is-sup with osuc-≡< (ZChain.supf-mono zc (o<→≤ b<x))
738 ... | case2 sb<sx = ⟪ ab , ch-is-sup b sb<sx m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where 736 ... | case2 sb<sx = ⟪ ab , ch-is-sup b b<x m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where
739 b<A : b o< & A 737 b<A : b o< & A
740 b<A = z09 ab 738 b<A = z09 ab
741 m04 : ¬ HasPrev A (UnionCF A f mf ay supf b) f b 739 m04 : ¬ HasPrev A (UnionCF A f mf ay supf b) f b
742 m04 nhp = proj1 is-sup ( record { ax = HasPrev.ax nhp ; y = HasPrev.y nhp ; ay = 740 m04 nhp = proj1 is-sup ( record { ax = HasPrev.ax nhp ; y = HasPrev.y nhp ; ay =
743 chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) ; x=fy = HasPrev.x=fy nhp } ) 741 chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) ; x=fy = HasPrev.x=fy nhp } )
770 is-max {a} {b} ua b<x ab P a<b with ODC.or-exclude O P 768 is-max {a} {b} ua b<x ab P a<b with ODC.or-exclude O P
771 is-max {a} {b} ua b<x ab P a<b | case1 has-prev = is-max-hp x {a} {b} ua ab has-prev a<b 769 is-max {a} {b} ua b<x ab P a<b | case1 has-prev = is-max-hp x {a} {b} ua ab has-prev a<b
772 is-max {a} {b} ua b<x ab P a<b | case2 is-sup with IsSUP.x≤sup (proj2 is-sup) (init-uchain A f mf ay ) 770 is-max {a} {b} ua b<x ab P a<b | case2 is-sup with IsSUP.x≤sup (proj2 is-sup) (init-uchain A f mf ay )
773 ... | case1 b=y = ⟪ subst (λ k → odef A k ) b=y ay , ch-init (subst (λ k → FClosure A f y k ) b=y (init ay refl )) ⟫ 771 ... | case1 b=y = ⟪ subst (λ k → odef A k ) b=y ay , ch-init (subst (λ k → FClosure A f y k ) b=y (init ay refl )) ⟫
774 ... | case2 y<b with osuc-≡< (ZChain.supf-mono zc (o<→≤ b<x)) 772 ... | case2 y<b with osuc-≡< (ZChain.supf-mono zc (o<→≤ b<x))
775 ... | case2 sb<sx = ⟪ ab , ch-is-sup b sb<sx m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where 773 ... | case2 sb<sx = ⟪ ab , ch-is-sup b b<x m06 (subst (λ k → FClosure A f k b) (sym m05) (init ab refl)) ⟫ where
776 m09 : b o< & A 774 m09 : b o< & A
777 m09 = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) ab)) 775 m09 = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) ab))
778 m07 : {z : Ordinal} → FClosure A f y z → z <= ZChain.supf zc b 776 m07 : {z : Ordinal} → FClosure A f y z → z <= ZChain.supf zc b
779 m07 {z} fc = ZChain.fcy<sup zc (o<→≤ m09) fc 777 m07 {z} fc = ZChain.fcy<sup zc (o<→≤ m09) fc
780 m08 : {s z1 : Ordinal} → ZChain.supf zc s o< ZChain.supf zc b 778 m08 : {s z1 : Ordinal} → ZChain.supf zc s o< ZChain.supf zc b
1030 fcup {u} {z} fc u≤px = subst (λ k → FClosure A f k z ) (sf1=sf0 u≤px) fc 1028 fcup {u} {z} fc u≤px = subst (λ k → FClosure A f k z ) (sf1=sf0 u≤px) fc
1031 fcpu : {u z : Ordinal } → FClosure A f (supf0 u) z → u o≤ px → FClosure A f (supf1 u) z 1029 fcpu : {u z : Ordinal } → FClosure A f (supf0 u) z → u o≤ px → FClosure A f (supf1 u) z
1032 fcpu {u} {z} fc u≤px = subst (λ k → FClosure A f k z ) (sym (sf1=sf0 u≤px)) fc 1030 fcpu {u} {z} fc u≤px = subst (λ k → FClosure A f k z ) (sym (sf1=sf0 u≤px)) fc
1033 1031
1034 fcs<sup : {a b w : Ordinal } → a o< b → b o≤ x → FClosure A f (supf1 a) w → odef (UnionCF A f mf ay supf1 b) w 1032 fcs<sup : {a b w : Ordinal } → a o< b → b o≤ x → FClosure A f (supf1 a) w → odef (UnionCF A f mf ay supf1 b) w
1035 fcs<sup with trio< a px 1033 fcs<sup {a} {b} {w} a<b b≤x fc with trio< a px
1036 ... | tri< a ¬b ¬c = ? -- chain-mono ZChain.fcs<sup a 1034 ... | tri< a<px ¬b ¬c = ? -- chain-mono ZChain.fcs<sup a
1037 ... | tri≈ ¬a b ¬c = ? -- a ≡ px , b ≡ x, sp o≤ x → supf px o≤ supf x 1035 ... | tri≈ ¬a a=px ¬c = ⟪ A∋fc _ f mf fc , ch-is-sup px px<b ? ? ⟫ where -- a ≡ px , b ≡ x, sp o≤ x → supf px o≤ supf x
1036 px<b : px o< b
1037 px<b = subst₂ (λ j k → j o< k) a=px refl a<b
1038 b=x : b ≡ x
1039 b=x with trio< b x
1040 ... | tri< a ¬b ¬c = ?
1041 ... | tri≈ ¬a b ¬c = b
1042 ... | tri> ¬a ¬b c = ⊥-elim ( o<> c ? ) -- subst₂ (λ j k → j o≤ k ) ? ? a<b
1038 ... | tri> ¬a ¬b c = ? -- px o< a o< b o≤ x 1043 ... | tri> ¬a ¬b c = ? -- px o< a o< b o≤ x
1039 1044
1040 zc11 : {z : Ordinal} → odef (UnionCF A f mf ay supf1 x) z → odef pchainpx z 1045 zc11 : {z : Ordinal} → odef (UnionCF A f mf ay supf1 x) z → odef pchainpx z
1041 zc11 {z} ⟪ az , ch-init fc ⟫ = case1 ⟪ az , ch-init fc ⟫ 1046 zc11 {z} ⟪ az , ch-init fc ⟫ = case1 ⟪ az , ch-init fc ⟫
1042 zc11 {z} ⟪ az , ch-is-sup u su<sx is-sup fc ⟫ = zc21 fc where 1047 zc11 {z} ⟪ az , ch-is-sup u u<x is-sup fc ⟫ = zc21 fc where
1043 u<x : u o< x
1044 u<x = supf-inject0 supf1-mono su<sx
1045 u≤px : u o≤ px 1048 u≤px : u o≤ px
1046 u≤px = zc-b<x _ u<x 1049 u≤px = zc-b<x _ u<x
1047 zc21 : {z1 : Ordinal } → FClosure A f (supf1 u) z1 → odef pchainpx z1 1050 zc21 : {z1 : Ordinal } → FClosure A f (supf1 u) z1 → odef pchainpx z1
1048 zc21 {z1} (fsuc z2 fc ) with zc21 fc 1051 zc21 {z1} (fsuc z2 fc ) with zc21 fc
1049 ... | case1 ⟪ ua1 , ch-init fc₁ ⟫ = case1 ⟪ proj2 ( mf _ ua1) , ch-init (fsuc _ fc₁) ⟫ 1052 ... | case1 ⟪ ua1 , ch-init fc₁ ⟫ = case1 ⟪ proj2 ( mf _ ua1) , ch-init (fsuc _ fc₁) ⟫
1050 ... | case1 ⟪ ua1 , ch-is-sup u u<x u1-is-sup fc₁ ⟫ = case1 ⟪ proj2 ( mf _ ua1) , ch-is-sup u u<x u1-is-sup (fsuc _ fc₁) ⟫ 1053 ... | case1 ⟪ ua1 , ch-is-sup u u<x u1-is-sup fc₁ ⟫ = case1 ⟪ proj2 ( mf _ ua1) , ch-is-sup u u<x u1-is-sup (fsuc _ fc₁) ⟫
1051 ... | case2 fc = case2 (fsuc _ fc) 1054 ... | case2 fc = case2 (fsuc _ fc)
1052 zc21 (init asp refl ) with trio< (supf0 u) (supf0 px) | inspect supf1 u 1055 zc21 (init asp refl ) with trio< (supf0 u) (supf0 px) | inspect supf1 u
1053 ... | tri< a ¬b ¬c | _ = case1 ⟪ asp , ch-is-sup u a record {fcy<sup = zc13 ; order = zc17 1056 ... | tri< a ¬b ¬c | _ = case1 ⟪ asp , ch-is-sup u u<px record {fcy<sup = zc13 ; order = zc17
1054 ; supu=u = trans (sym (sf1=sf0 (o<→≤ u<px))) (ChainP.supu=u is-sup) } (init asp0 (sym (sf1=sf0 (o<→≤ u<px))) ) ⟫ where 1057 ; supu=u = trans (sym (sf1=sf0 (o<→≤ u<px))) (ChainP.supu=u is-sup) } (init asp0 (sym (sf1=sf0 (o<→≤ u<px))) ) ⟫ where
1055 u<px : u o< px 1058 u<px : u o< px
1056 u<px = ZChain.supf-inject zc a 1059 u<px = ZChain.supf-inject zc a
1057 asp0 : odef A (supf0 u) 1060 asp0 : odef A (supf0 u)
1058 asp0 = ZChain.asupf zc 1061 asp0 = ZChain.asupf zc
1139 ... | tri< a ¬b ¬c = ⊥-elim ( o<> (osucc a) (subst (λ k → k o≤ z) (sym (Oprev.oprev=x op)) x≤z ) ) 1142 ... | tri< a ¬b ¬c = ⊥-elim ( o<> (osucc a) (subst (λ k → k o≤ z) (sym (Oprev.oprev=x op)) x≤z ) )
1140 ... | tri≈ ¬a b ¬c = ⊥-elim ( o≤> x≤z (subst (λ k → k o< x ) (sym b) px<x )) 1143 ... | tri≈ ¬a b ¬c = ⊥-elim ( o≤> x≤z (subst (λ k → k o< x ) (sym b) px<x ))
1141 ... | tri> ¬a ¬b c = o≤-refl0 ? -- (sym ( ZChain.supfmax zc px<x )) 1144 ... | tri> ¬a ¬b c = o≤-refl0 ? -- (sym ( ZChain.supfmax zc px<x ))
1142 1145
1143 zc17 : {z : Ordinal } → supf0 z o≤ supf0 px 1146 zc17 : {z : Ordinal } → supf0 z o≤ supf0 px
1144 zc17 = ? -- px o< z, px o< supf0 px 1147 zc17 {z} with trio< z px
1148 ... | tri< a ¬b ¬c = ZChain.supf-mono zc (o<→≤ a)
1149 ... | tri≈ ¬a b ¬c = o≤-refl0 (cong supf0 b)
1150 ... | tri> ¬a ¬b px<z = o≤-refl0 zc177 where
1151 zc177 : supf0 z ≡ supf0 px
1152 zc177 = ZChain.supfmax zc px<z -- px o< z, px o< supf0 px
1145 1153
1146 supf-mono1 : {z w : Ordinal } → z o≤ w → supf1 z o≤ supf1 w 1154 supf-mono1 : {z w : Ordinal } → z o≤ w → supf1 z o≤ supf1 w
1147 supf-mono1 {z} {w} z≤w with trio< w px 1155 supf-mono1 {z} {w} z≤w with trio< w px
1148 ... | tri< a ¬b ¬c = subst₂ (λ j k → j o≤ k ) (sym (sf1=sf0 (ordtrans≤-< z≤w a))) refl ( supf-mono z≤w ) 1156 ... | tri< a ¬b ¬c = subst₂ (λ j k → j o≤ k ) (sym (sf1=sf0 (ordtrans≤-< z≤w a))) refl ( supf-mono z≤w )
1149 ... | tri≈ ¬a refl ¬c with trio< z px 1157 ... | tri≈ ¬a refl ¬c with trio< z px
1150 ... | tri< a ¬b ¬c = zc17 1158 ... | tri< a ¬b ¬c = zc17
1151 ... | tri≈ ¬a refl ¬c = o≤-refl 1159 ... | tri≈ ¬a refl ¬c = o≤-refl
1152 ... | tri> ¬a ¬b c = o≤-refl 1160 ... | tri> ¬a ¬b c = o≤-refl
1153 supf-mono1 {z} {w} z≤w | tri> ¬a ¬b c with trio< z px 1161 supf-mono1 {z} {w} z≤w | tri> ¬a ¬b px<w with trio< z px
1154 ... | tri< a ¬b ¬c = zc17 1162 ... | tri< a ¬b ¬c = zc17
1155 ... | tri≈ ¬a b ¬c = o≤-refl0 ? 1163 ... | tri≈ ¬a b ¬c = o≤-refl0 (cong supf0 b) -- z=px supf1 z = supf0 z, supf1 w = supf0 px
1156 ... | tri> ¬a ¬b c = o≤-refl 1164 ... | tri> ¬a ¬b c = o≤-refl
1157 1165
1158 pchain1 : HOD 1166 pchain1 : HOD
1159 pchain1 = UnionCF A f mf ay supf1 x 1167 pchain1 = UnionCF A f mf ay supf1 x
1160 1168