Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison logic.agda @ 213:22d435172d1a
separate logic and nat
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 02 Aug 2019 12:17:10 +0900 |
parents | |
children | 8b0715e28b33 |
comparison
equal
deleted
inserted
replaced
212:0a1804cc9d0a | 213:22d435172d1a |
---|---|
1 module logic where | |
2 | |
3 open import Level | |
4 open import Relation.Nullary | |
5 open import Relation.Binary | |
6 open import Data.Empty | |
7 | |
8 | |
9 data Bool : Set where | |
10 true : Bool | |
11 false : Bool | |
12 | |
13 record _∧_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where | |
14 field | |
15 proj1 : A | |
16 proj2 : B | |
17 | |
18 data _∨_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where | |
19 case1 : A → A ∨ B | |
20 case2 : B → A ∨ B | |
21 | |
22 _⇔_ : {n m : Level } → ( A : Set n ) ( B : Set m ) → Set (n ⊔ m) | |
23 _⇔_ A B = ( A → B ) ∧ ( B → A ) | |
24 | |
25 contra-position : {n m : Level } {A : Set n} {B : Set m} → (A → B) → ¬ B → ¬ A | |
26 contra-position {n} {m} {A} {B} f ¬b a = ¬b ( f a ) | |
27 | |
28 double-neg : {n : Level } {A : Set n} → A → ¬ ¬ A | |
29 double-neg A notnot = notnot A | |
30 | |
31 double-neg2 : {n : Level } {A : Set n} → ¬ ¬ ¬ A → ¬ A | |
32 double-neg2 notnot A = notnot ( double-neg A ) | |
33 | |
34 de-morgan : {n : Level } {A B : Set n} → A ∧ B → ¬ ( (¬ A ) ∨ (¬ B ) ) | |
35 de-morgan {n} {A} {B} and (case1 ¬A) = ⊥-elim ( ¬A ( _∧_.proj1 and )) | |
36 de-morgan {n} {A} {B} and (case2 ¬B) = ⊥-elim ( ¬B ( _∧_.proj2 and )) | |
37 | |
38 dont-or : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → ¬ A → B | |
39 dont-or {A} {B} (case1 a) ¬A = ⊥-elim ( ¬A a ) | |
40 dont-or {A} {B} (case2 b) ¬A = b | |
41 | |
42 dont-orb : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → ¬ B → A | |
43 dont-orb {A} {B} (case2 b) ¬B = ⊥-elim ( ¬B b ) | |
44 dont-orb {A} {B} (case1 a) ¬B = a | |
45 | |
46 | |
47 infixr 130 _∧_ | |
48 infixr 140 _∨_ | |
49 infixr 150 _⇔_ | |
50 |