Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison OD.agda @ 223:2e1f19c949dc
sepration of ordinal from OD
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 09 Aug 2019 17:57:58 +0900 |
parents | 43021d2b8756 |
children | 176ff97547b4 |
comparison
equal
deleted
inserted
replaced
222:59771eb07df0 | 223:2e1f19c949dc |
---|---|
1 open import Level | 1 open import Level |
2 module OD where | 2 open import Ordinals |
3 module OD {n : Level } (O : Ordinals {n} ) where | |
3 | 4 |
4 open import zf | 5 open import zf |
5 open import ordinal | |
6 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) | 6 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
7 open import Relation.Binary.PropositionalEquality | 7 open import Relation.Binary.PropositionalEquality |
8 open import Data.Nat.Properties | 8 open import Data.Nat.Properties |
9 open import Data.Empty | 9 open import Data.Empty |
10 open import Relation.Nullary | 10 open import Relation.Nullary |
12 open import Relation.Binary.Core | 12 open import Relation.Binary.Core |
13 | 13 |
14 open import logic | 14 open import logic |
15 open import nat | 15 open import nat |
16 | 16 |
17 open inOrdinal O | |
18 | |
17 -- Ordinal Definable Set | 19 -- Ordinal Definable Set |
18 | 20 |
19 record OD {n : Level} : Set (suc n) where | 21 record OD : Set (suc n ) where |
20 field | 22 field |
21 def : (x : Ordinal {n} ) → Set n | 23 def : (x : Ordinal ) → Set n |
22 | 24 |
23 open OD | 25 open OD |
24 | 26 |
25 open Ordinal | |
26 open _∧_ | 27 open _∧_ |
27 open _∨_ | 28 open _∨_ |
28 open Bool | 29 open Bool |
29 | 30 |
30 record _==_ {n : Level} ( a b : OD {n} ) : Set n where | 31 record _==_ ( a b : OD ) : Set n where |
31 field | 32 field |
32 eq→ : ∀ { x : Ordinal {n} } → def a x → def b x | 33 eq→ : ∀ { x : Ordinal } → def a x → def b x |
33 eq← : ∀ { x : Ordinal {n} } → def b x → def a x | 34 eq← : ∀ { x : Ordinal } → def b x → def a x |
34 | 35 |
35 id : {n : Level} {A : Set n} → A → A | 36 id : {n : Level} {A : Set n} → A → A |
36 id x = x | 37 id x = x |
37 | 38 |
38 eq-refl : {n : Level} { x : OD {n} } → x == x | 39 eq-refl : { x : OD } → x == x |
39 eq-refl {n} {x} = record { eq→ = id ; eq← = id } | 40 eq-refl {x} = record { eq→ = id ; eq← = id } |
40 | 41 |
41 open _==_ | 42 open _==_ |
42 | 43 |
43 eq-sym : {n : Level} { x y : OD {n} } → x == y → y == x | 44 eq-sym : { x y : OD } → x == y → y == x |
44 eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } | 45 eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } |
45 | 46 |
46 eq-trans : {n : Level} { x y z : OD {n} } → x == y → y == z → x == z | 47 eq-trans : { x y z : OD } → x == y → y == z → x == z |
47 eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } | 48 eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } |
48 | 49 |
49 ⇔→== : {n : Level} { x y : OD {suc n} } → ( {z : Ordinal {suc n}} → def x z ⇔ def y z) → x == y | 50 ⇔→== : { x y : OD } → ( {z : Ordinal } → def x z ⇔ def y z) → x == y |
50 eq→ ( ⇔→== {n} {x} {y} eq ) {z} m = proj1 eq m | 51 eq→ ( ⇔→== {x} {y} eq ) {z} m = proj1 eq m |
51 eq← ( ⇔→== {n} {x} {y} eq ) {z} m = proj2 eq m | 52 eq← ( ⇔→== {x} {y} eq ) {z} m = proj2 eq m |
52 | 53 |
53 -- Ordinal in OD ( and ZFSet ) Transitive Set | 54 -- Ordinal in OD ( and ZFSet ) Transitive Set |
54 Ord : { n : Level } → ( a : Ordinal {n} ) → OD {n} | 55 Ord : ( a : Ordinal ) → OD |
55 Ord {n} a = record { def = λ y → y o< a } | 56 Ord a = record { def = λ y → y o< a } |
56 | 57 |
57 od∅ : {n : Level} → OD {n} | 58 od∅ : OD |
58 od∅ {n} = Ord o∅ | 59 od∅ = Ord o∅ |
59 | 60 |
60 postulate | 61 postulate |
61 -- OD can be iso to a subset of Ordinal ( by means of Godel Set ) | 62 -- OD can be iso to a subset of Ordinal ( by means of Godel Set ) |
62 od→ord : {n : Level} → OD {n} → Ordinal {n} | 63 od→ord : OD → Ordinal |
63 ord→od : {n : Level} → Ordinal {n} → OD {n} | 64 ord→od : Ordinal → OD |
64 c<→o< : {n : Level} {x y : OD {n} } → def y ( od→ord x ) → od→ord x o< od→ord y | 65 c<→o< : {x y : OD } → def y ( od→ord x ) → od→ord x o< od→ord y |
65 oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x | 66 oiso : {x : OD } → ord→od ( od→ord x ) ≡ x |
66 diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x | 67 diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x |
67 -- we should prove this in agda, but simply put here | 68 -- we should prove this in agda, but simply put here |
68 ==→o≡ : {n : Level} → { x y : OD {suc n} } → (x == y) → x ≡ y | 69 ==→o≡ : { x y : OD } → (x == y) → x ≡ y |
69 -- next assumption causes ∀ x ∋ ∅ . It menas only an ordinal becomes a set | 70 -- next assumption causes ∀ x ∋ ∅ . It menas only an ordinal becomes a set |
70 -- o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → def (ord→od y) x | 71 -- o<→c< : {n : Level} {x y : Ordinal } → x o< y → def (ord→od y) x |
71 -- ord→od x ≡ Ord x results the same | 72 -- ord→od x ≡ Ord x results the same |
72 -- supermum as Replacement Axiom | 73 -- supermum as Replacement Axiom |
73 sup-o : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} | 74 sup-o : ( Ordinal → Ordinal ) → Ordinal |
74 sup-o< : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → ∀ {x : Ordinal {n}} → ψ x o< sup-o ψ | 75 sup-o< : { ψ : Ordinal → Ordinal } → ∀ {x : Ordinal } → ψ x o< sup-o ψ |
75 -- contra-position of mimimulity of supermum required in Power Set Axiom | 76 -- contra-position of mimimulity of supermum required in Power Set Axiom |
76 -- sup-x : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} | 77 -- sup-x : {n : Level } → ( Ordinal → Ordinal ) → Ordinal |
77 -- sup-lb : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → {z : Ordinal {n}} → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) | 78 -- sup-lb : {n : Level } → { ψ : Ordinal → Ordinal } → {z : Ordinal } → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) |
78 -- mimimul and x∋minimul is an Axiom of choice | 79 -- mimimul and x∋minimul is an Axiom of choice |
79 minimul : {n : Level } → (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} | 80 minimul : (x : OD ) → ¬ (x == od∅ )→ OD |
80 -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) | 81 -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) |
81 x∋minimul : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimul x ne ) ) | 82 x∋minimul : (x : OD ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimul x ne ) ) |
82 -- minimulity (may proved by ε-induction ) | 83 -- minimulity (may proved by ε-induction ) |
83 minimul-1 : {n : Level } → (x : OD {suc n} ) → ( ne : ¬ (x == od∅ ) ) → (y : OD {suc n}) → ¬ ( def (minimul x ne) (od→ord y)) ∧ (def x (od→ord y) ) | 84 minimul-1 : (x : OD ) → ( ne : ¬ (x == od∅ ) ) → (y : OD ) → ¬ ( def (minimul x ne) (od→ord y)) ∧ (def x (od→ord y) ) |
84 | 85 |
85 _∋_ : { n : Level } → ( a x : OD {n} ) → Set n | 86 _∋_ : ( a x : OD ) → Set n |
86 _∋_ {n} a x = def a ( od→ord x ) | 87 _∋_ a x = def a ( od→ord x ) |
87 | 88 |
88 _c<_ : { n : Level } → ( x a : OD {n} ) → Set n | 89 _c<_ : ( x a : OD ) → Set n |
89 x c< a = a ∋ x | 90 x c< a = a ∋ x |
90 | 91 |
91 _c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n) | 92 _c≤_ : OD → OD → Set (suc n) |
92 a c≤ b = (a ≡ b) ∨ ( b ∋ a ) | 93 a c≤ b = (a ≡ b) ∨ ( b ∋ a ) |
93 | 94 |
94 cseq : {n : Level} → OD {n} → OD {n} | 95 cseq : {n : Level} → OD → OD |
95 cseq x = record { def = λ y → def x (osuc y) } where | 96 cseq x = record { def = λ y → def x (osuc y) } where |
96 | 97 |
97 def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x | 98 def-subst : {Z : OD } {X : Ordinal }{z : OD } {x : Ordinal }→ def Z X → Z ≡ z → X ≡ x → def z x |
98 def-subst df refl refl = df | 99 def-subst df refl refl = df |
99 | 100 |
100 sup-od : {n : Level } → ( OD {n} → OD {n}) → OD {n} | 101 sup-od : ( OD → OD ) → OD |
101 sup-od ψ = Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) ) | 102 sup-od ψ = Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) ) |
102 | 103 |
103 sup-c< : {n : Level } → ( ψ : OD {n} → OD {n}) → ∀ {x : OD {n}} → def ( sup-od ψ ) (od→ord ( ψ x )) | 104 sup-c< : ( ψ : OD → OD ) → ∀ {x : OD } → def ( sup-od ψ ) (od→ord ( ψ x )) |
104 sup-c< {n} ψ {x} = def-subst {n} {_} {_} {Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) )} {od→ord ( ψ x )} | 105 sup-c< ψ {x} = def-subst {_} {_} {Ord ( sup-o ( λ x → od→ord (ψ (ord→od x ))) )} {od→ord ( ψ x )} |
105 lemma refl (cong ( λ k → od→ord (ψ k) ) oiso) where | 106 lemma refl (cong ( λ k → od→ord (ψ k) ) oiso) where |
106 lemma : od→ord (ψ (ord→od (od→ord x))) o< sup-o (λ x → od→ord (ψ (ord→od x))) | 107 lemma : od→ord (ψ (ord→od (od→ord x))) o< sup-o (λ x → od→ord (ψ (ord→od x))) |
107 lemma = subst₂ (λ j k → j o< k ) refl diso (o<-subst sup-o< refl (sym diso) ) | 108 lemma = subst₂ (λ j k → j o< k ) refl diso (o<-subst sup-o< refl (sym diso) ) |
108 | 109 |
109 otrans : {n : Level} {a x y : Ordinal {n} } → def (Ord a) x → def (Ord x) y → def (Ord a) y | 110 otrans : {n : Level} {a x y : Ordinal } → def (Ord a) x → def (Ord x) y → def (Ord a) y |
110 otrans x<a y<x = ordtrans y<x x<a | 111 otrans x<a y<x = ordtrans y<x x<a |
111 | 112 |
112 def→o< : {n : Level } {X : OD {suc n}} → {x : Ordinal {suc n}} → def X x → x o< od→ord X | 113 def→o< : {X : OD } → {x : Ordinal } → def X x → x o< od→ord X |
113 def→o< {n} {X} {x} lt = o<-subst {suc n} {_} {_} {x} {od→ord X} ( c<→o< ( def-subst {suc n} {X} {x} lt (sym oiso) (sym diso) )) diso diso | 114 def→o< {X} {x} lt = o<-subst {_} {_} {x} {od→ord X} ( c<→o< ( def-subst {X} {x} lt (sym oiso) (sym diso) )) diso diso |
114 | |
115 ∅3 : {n : Level} → { x : Ordinal {suc n}} → ( ∀(y : Ordinal {suc n}) → ¬ (y o< x ) ) → x ≡ o∅ {suc n} | |
116 ∅3 {n} {x} = TransFinite {n} c2 c3 x where | |
117 c0 : Nat → Ordinal {suc n} → Set (suc n) | |
118 c0 lx x = (∀(y : Ordinal {suc n}) → ¬ (y o< x)) → x ≡ o∅ {suc n} | |
119 c2 : (lx : Nat) → ((x₁ : Ordinal) → x₁ o< ordinal lx (Φ lx) → c0 (lv x₁) (record { lv = lv x₁ ; ord = ord x₁ }))→ c0 lx (record { lv = lx ; ord = Φ lx } ) | |
120 c2 Zero _ not = refl | |
121 c2 (Suc lx) _ not with not ( record { lv = lx ; ord = Φ lx } ) | |
122 ... | t with t (case1 ≤-refl ) | |
123 c2 (Suc lx) _ not | t | () | |
124 c3 : (lx : Nat) (x₁ : OrdinalD lx) → c0 lx (record { lv = lx ; ord = x₁ }) → c0 lx (record { lv = lx ; ord = OSuc lx x₁ }) | |
125 c3 lx (Φ .lx) d not with not ( record { lv = lx ; ord = Φ lx } ) | |
126 ... | t with t (case2 Φ< ) | |
127 c3 lx (Φ .lx) d not | t | () | |
128 c3 lx (OSuc .lx x₁) d not with not ( record { lv = lx ; ord = OSuc lx x₁ } ) | |
129 ... | t with t (case2 (s< s<refl ) ) | |
130 c3 lx (OSuc .lx x₁) d not | t | () | |
131 | |
132 ∅5 : {n : Level} → { x : Ordinal {n} } → ¬ ( x ≡ o∅ {n} ) → o∅ {n} o< x | |
133 ∅5 {n} {record { lv = Zero ; ord = (Φ .0) }} not = ⊥-elim (not refl) | |
134 ∅5 {n} {record { lv = Zero ; ord = (OSuc .0 ord) }} not = case2 Φ< | |
135 ∅5 {n} {record { lv = (Suc lv) ; ord = ord }} not = case1 (s≤s z≤n) | |
136 | |
137 ord-iso : {n : Level} {y : Ordinal {n} } → record { lv = lv (od→ord (ord→od y)) ; ord = ord (od→ord (ord→od y)) } ≡ record { lv = lv y ; ord = ord y } | |
138 ord-iso = cong ( λ k → record { lv = lv k ; ord = ord k } ) diso | |
139 | 115 |
140 -- avoiding lv != Zero error | 116 -- avoiding lv != Zero error |
141 orefl : {n : Level} → { x : OD {n} } → { y : Ordinal {n} } → od→ord x ≡ y → od→ord x ≡ y | 117 orefl : { x : OD } → { y : Ordinal } → od→ord x ≡ y → od→ord x ≡ y |
142 orefl refl = refl | 118 orefl refl = refl |
143 | 119 |
144 ==-iso : {n : Level} → { x y : OD {n} } → ord→od (od→ord x) == ord→od (od→ord y) → x == y | 120 ==-iso : { x y : OD } → ord→od (od→ord x) == ord→od (od→ord y) → x == y |
145 ==-iso {n} {x} {y} eq = record { | 121 ==-iso {x} {y} eq = record { |
146 eq→ = λ d → lemma ( eq→ eq (def-subst d (sym oiso) refl )) ; | 122 eq→ = λ d → lemma ( eq→ eq (def-subst d (sym oiso) refl )) ; |
147 eq← = λ d → lemma ( eq← eq (def-subst d (sym oiso) refl )) } | 123 eq← = λ d → lemma ( eq← eq (def-subst d (sym oiso) refl )) } |
148 where | 124 where |
149 lemma : {x : OD {n} } {z : Ordinal {n}} → def (ord→od (od→ord x)) z → def x z | 125 lemma : {x : OD } {z : Ordinal } → def (ord→od (od→ord x)) z → def x z |
150 lemma {x} {z} d = def-subst d oiso refl | 126 lemma {x} {z} d = def-subst d oiso refl |
151 | 127 |
152 =-iso : {n : Level } {x y : OD {suc n} } → (x == y) ≡ (ord→od (od→ord x) == y) | 128 =-iso : {x y : OD } → (x == y) ≡ (ord→od (od→ord x) == y) |
153 =-iso {_} {_} {y} = cong ( λ k → k == y ) (sym oiso) | 129 =-iso {_} {y} = cong ( λ k → k == y ) (sym oiso) |
154 | 130 |
155 ord→== : {n : Level} → { x y : OD {n} } → od→ord x ≡ od→ord y → x == y | 131 ord→== : { x y : OD } → od→ord x ≡ od→ord y → x == y |
156 ord→== {n} {x} {y} eq = ==-iso (lemma (od→ord x) (od→ord y) (orefl eq)) where | 132 ord→== {x} {y} eq = ==-iso (lemma (od→ord x) (od→ord y) (orefl eq)) where |
157 lemma : ( ox oy : Ordinal {n} ) → ox ≡ oy → (ord→od ox) == (ord→od oy) | 133 lemma : ( ox oy : Ordinal ) → ox ≡ oy → (ord→od ox) == (ord→od oy) |
158 lemma ox ox refl = eq-refl | 134 lemma ox ox refl = eq-refl |
159 | 135 |
160 o≡→== : {n : Level} → { x y : Ordinal {n} } → x ≡ y → ord→od x == ord→od y | 136 o≡→== : { x y : Ordinal } → x ≡ y → ord→od x == ord→od y |
161 o≡→== {n} {x} {.x} refl = eq-refl | 137 o≡→== {x} {.x} refl = eq-refl |
162 | 138 |
163 c≤-refl : {n : Level} → ( x : OD {n} ) → x c≤ x | 139 c≤-refl : {n : Level} → ( x : OD ) → x c≤ x |
164 c≤-refl x = case1 refl | 140 c≤-refl x = case1 refl |
165 | 141 |
166 o∅≡od∅ : {n : Level} → ord→od (o∅ {suc n}) ≡ od∅ {suc n} | 142 o∅≡od∅ : ord→od (o∅ ) ≡ od∅ |
167 o∅≡od∅ {n} = ==→o≡ lemma where | 143 o∅≡od∅ = ==→o≡ lemma where |
168 lemma0 : {x : Ordinal} → def (ord→od o∅) x → def od∅ x | 144 lemma0 : {x : Ordinal} → def (ord→od o∅) x → def od∅ x |
169 lemma0 {x} lt = o<-subst (c<→o< {suc n} {ord→od x} {ord→od o∅} (def-subst {suc n} {ord→od o∅} {x} lt refl (sym diso)) ) diso diso | 145 lemma0 {x} lt = o<-subst (c<→o< {ord→od x} {ord→od o∅} (def-subst {ord→od o∅} {x} lt refl (sym diso)) ) diso diso |
170 lemma1 : {x : Ordinal} → def od∅ x → def (ord→od o∅) x | 146 lemma1 : {x : Ordinal} → def od∅ x → def (ord→od o∅) x |
171 lemma1 (case1 ()) | 147 lemma1 {x} lt = ⊥-elim (¬x<0 lt) |
172 lemma1 (case2 ()) | |
173 lemma : ord→od o∅ == od∅ | 148 lemma : ord→od o∅ == od∅ |
174 lemma = record { eq→ = lemma0 ; eq← = lemma1 } | 149 lemma = record { eq→ = lemma0 ; eq← = lemma1 } |
175 | 150 |
176 ord-od∅ : {n : Level} → od→ord (od∅ {suc n}) ≡ o∅ {suc n} | 151 ord-od∅ : od→ord (od∅ ) ≡ o∅ |
177 ord-od∅ {n} = sym ( subst (λ k → k ≡ od→ord (od∅ {suc n}) ) diso (cong ( λ k → od→ord k ) o∅≡od∅ ) ) | 152 ord-od∅ = sym ( subst (λ k → k ≡ od→ord (od∅ ) ) diso (cong ( λ k → od→ord k ) o∅≡od∅ ) ) |
178 | 153 |
179 ∅0 : {n : Level} → record { def = λ x → Lift n ⊥ } == od∅ {n} | 154 ∅0 : record { def = λ x → Lift n ⊥ } == od∅ |
180 eq→ ∅0 {w} (lift ()) | 155 eq→ ∅0 {w} (lift ()) |
181 eq← ∅0 {w} (case1 ()) | 156 eq← ∅0 {w} lt = lift (¬x<0 lt) |
182 eq← ∅0 {w} (case2 ()) | 157 |
183 | 158 ∅< : { x y : OD } → def x (od→ord y ) → ¬ ( x == od∅ ) |
184 ∅< : {n : Level} → { x y : OD {n} } → def x (od→ord y ) → ¬ ( x == od∅ {n} ) | 159 ∅< {x} {y} d eq with eq→ (eq-trans eq (eq-sym ∅0) ) d |
185 ∅< {n} {x} {y} d eq with eq→ (eq-trans eq (eq-sym ∅0) ) d | 160 ∅< {x} {y} d eq | lift () |
186 ∅< {n} {x} {y} d eq | lift () | |
187 | 161 |
188 ∅6 : {n : Level} → { x : OD {suc n} } → ¬ ( x ∋ x ) -- no Russel paradox | 162 ∅6 : { x : OD } → ¬ ( x ∋ x ) -- no Russel paradox |
189 ∅6 {n} {x} x∋x = o<¬≡ refl ( c<→o< {suc n} {x} {x} x∋x ) | 163 ∅6 {x} x∋x = o<¬≡ refl ( c<→o< {x} {x} x∋x ) |
190 | 164 |
191 def-iso : {n : Level} {A B : OD {n}} {x y : Ordinal {n}} → x ≡ y → (def A y → def B y) → def A x → def B x | 165 def-iso : {A B : OD } {x y : Ordinal } → x ≡ y → (def A y → def B y) → def A x → def B x |
192 def-iso refl t = t | 166 def-iso refl t = t |
193 | 167 |
194 is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} ) | 168 is-o∅ : ( x : Ordinal ) → Dec ( x ≡ o∅ ) |
195 is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl | 169 is-o∅ x with trio< x o∅ |
196 is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) | 170 is-o∅ x | tri< a ¬b ¬c = no ¬b |
197 is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) | 171 is-o∅ x | tri≈ ¬a b ¬c = yes b |
198 | 172 is-o∅ x | tri> ¬a ¬b c = no ¬b |
199 ppp : { n : Level } → { p : Set (suc n) } { a : OD {suc n} } → record { def = λ x → p } ∋ a → p | 173 |
200 ppp {n} {p} {a} d = d | 174 ppp : { p : Set n } { a : OD } → record { def = λ x → p } ∋ a → p |
175 ppp {p} {a} d = d | |
201 | 176 |
202 -- | 177 -- |
203 -- Axiom of choice in intutionistic logic implies the exclude middle | 178 -- Axiom of choice in intutionistic logic implies the exclude middle |
204 -- https://plato.stanford.edu/entries/axiom-choice/#AxiChoLog | 179 -- https://plato.stanford.edu/entries/axiom-choice/#AxiChoLog |
205 -- | 180 -- |
206 p∨¬p : { n : Level } → ( p : Set (suc n) ) → p ∨ ( ¬ p ) -- assuming axiom of choice | 181 p∨¬p : ( p : Set n ) → p ∨ ( ¬ p ) -- assuming axiom of choice |
207 p∨¬p {n} p with is-o∅ ( od→ord ( record { def = λ x → p } )) | 182 p∨¬p p with is-o∅ ( od→ord ( record { def = λ x → p } )) |
208 p∨¬p {n} p | yes eq = case2 (¬p eq) where | 183 p∨¬p p | yes eq = case2 (¬p eq) where |
209 ps = record { def = λ x → p } | 184 ps = record { def = λ x → p } |
210 lemma : ps == od∅ → p → ⊥ | 185 lemma : ps == od∅ → p → ⊥ |
211 lemma eq p0 = ¬x<0 {n} {od→ord ps} (eq→ eq p0 ) | 186 lemma eq p0 = ¬x<0 {od→ord ps} (eq→ eq p0 ) |
212 ¬p : (od→ord ps ≡ o∅) → p → ⊥ | 187 ¬p : (od→ord ps ≡ o∅) → p → ⊥ |
213 ¬p eq = lemma ( subst₂ (λ j k → j == k ) oiso o∅≡od∅ ( o≡→== eq )) | 188 ¬p eq = lemma ( subst₂ (λ j k → j == k ) oiso o∅≡od∅ ( o≡→== eq )) |
214 p∨¬p {n} p | no ¬p = case1 (ppp {n} {p} {minimul ps (λ eq → ¬p (eqo∅ eq))} lemma) where | 189 p∨¬p p | no ¬p = case1 (ppp {p} {minimul ps (λ eq → ¬p (eqo∅ eq))} lemma) where |
215 ps = record { def = λ x → p } | 190 ps = record { def = λ x → p } |
216 eqo∅ : ps == od∅ {suc n} → od→ord ps ≡ o∅ {suc n} | 191 eqo∅ : ps == od∅ → od→ord ps ≡ o∅ |
217 eqo∅ eq = subst (λ k → od→ord ps ≡ k) ord-od∅ ( cong (λ k → od→ord k ) (==→o≡ eq)) | 192 eqo∅ eq = subst (λ k → od→ord ps ≡ k) ord-od∅ ( cong (λ k → od→ord k ) (==→o≡ eq)) |
218 lemma : ps ∋ minimul ps (λ eq → ¬p (eqo∅ eq)) | 193 lemma : ps ∋ minimul ps (λ eq → ¬p (eqo∅ eq)) |
219 lemma = x∋minimul ps (λ eq → ¬p (eqo∅ eq)) | 194 lemma = x∋minimul ps (λ eq → ¬p (eqo∅ eq)) |
220 | 195 |
221 ∋-p : { n : Level } → ( p : Set (suc n) ) → Dec p -- assuming axiom of choice | 196 ∋-p : ( p : Set n ) → Dec p -- assuming axiom of choice |
222 ∋-p {n} p with p∨¬p p | 197 ∋-p p with p∨¬p p |
223 ∋-p {n} p | case1 x = yes x | 198 ∋-p p | case1 x = yes x |
224 ∋-p {n} p | case2 x = no x | 199 ∋-p p | case2 x = no x |
225 | 200 |
226 double-neg-eilm : {n : Level } {A : Set (suc n)} → ¬ ¬ A → A -- we don't have this in intutionistic logic | 201 double-neg-eilm : {A : Set n} → ¬ ¬ A → A -- we don't have this in intutionistic logic |
227 double-neg-eilm {n} {A} notnot with ∋-p A -- assuming axiom of choice | 202 double-neg-eilm {A} notnot with ∋-p A -- assuming axiom of choice |
228 ... | yes p = p | 203 ... | yes p = p |
229 ... | no ¬p = ⊥-elim ( notnot ¬p ) | 204 ... | no ¬p = ⊥-elim ( notnot ¬p ) |
230 | 205 |
231 OrdP : {n : Level} → ( x : Ordinal {suc n} ) ( y : OD {suc n} ) → Dec ( Ord x ∋ y ) | 206 OrdP : ( x : Ordinal ) ( y : OD ) → Dec ( Ord x ∋ y ) |
232 OrdP {n} x y with trio< x (od→ord y) | 207 OrdP x y with trio< x (od→ord y) |
233 OrdP {n} x y | tri< a ¬b ¬c = no ¬c | 208 OrdP x y | tri< a ¬b ¬c = no ¬c |
234 OrdP {n} x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl ) | 209 OrdP x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl ) |
235 OrdP {n} x y | tri> ¬a ¬b c = yes c | 210 OrdP x y | tri> ¬a ¬b c = yes c |
236 | 211 |
237 -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) | 212 -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) |
238 -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality (suc n) (suc (suc n)) | 213 -- postulate f-extensionality : { n : Level} → Relation.Binary.PropositionalEquality.Extensionality n (suc n) |
239 | 214 |
240 in-codomain : {n : Level} → (X : OD {suc n} ) → ( ψ : OD {suc n} → OD {suc n} ) → OD {suc n} | 215 in-codomain : (X : OD ) → ( ψ : OD → OD ) → OD |
241 in-codomain {n} X ψ = record { def = λ x → ¬ ( (y : Ordinal {suc n}) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (ord→od y ))))) } | 216 in-codomain X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (ord→od y ))))) } |
242 | 217 |
243 -- Power Set of X ( or constructible by λ y → def X (od→ord y ) | 218 -- Power Set of X ( or constructible by λ y → def X (od→ord y ) |
244 | 219 |
245 ZFSubset : {n : Level} → (A x : OD {suc n} ) → OD {suc n} | 220 ZFSubset : (A x : OD ) → OD |
246 ZFSubset A x = record { def = λ y → def A y ∧ def x y } -- roughly x = A → Set | 221 ZFSubset A x = record { def = λ y → def A y ∧ def x y } -- roughly x = A → Set |
247 | 222 |
248 Def : {n : Level} → (A : OD {suc n}) → OD {suc n} | 223 Def : (A : OD ) → OD |
249 Def {n} A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) | 224 Def A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) |
250 | 225 |
251 | 226 |
252 _⊆_ : {n : Level} ( A B : OD {suc n} ) → ∀{ x : OD {suc n} } → Set (suc n) | 227 _⊆_ : ( A B : OD ) → ∀{ x : OD } → Set n |
253 _⊆_ A B {x} = A ∋ x → B ∋ x | 228 _⊆_ A B {x} = A ∋ x → B ∋ x |
254 | 229 |
255 infixr 220 _⊆_ | 230 infixr 220 _⊆_ |
256 | 231 |
257 subset-lemma : {n : Level} → {A x y : OD {suc n} } → ( x ∋ y → ZFSubset A x ∋ y ) ⇔ ( _⊆_ x A {y} ) | 232 subset-lemma : {A x y : OD } → ( x ∋ y → ZFSubset A x ∋ y ) ⇔ ( _⊆_ x A {y} ) |
258 subset-lemma {n} {A} {x} {y} = record { | 233 subset-lemma {A} {x} {y} = record { |
259 proj1 = λ z lt → proj1 (z lt) | 234 proj1 = λ z lt → proj1 (z lt) |
260 ; proj2 = λ x⊆A lt → record { proj1 = x⊆A lt ; proj2 = lt } | 235 ; proj2 = λ x⊆A lt → record { proj1 = x⊆A lt ; proj2 = lt } |
261 } | 236 } |
262 | 237 |
263 -- Constructible Set on α | 238 -- Constructible Set on α |
264 -- Def X = record { def = λ y → ∀ (x : OD ) → y < X ∧ y < od→ord x } | 239 -- Def X = record { def = λ y → ∀ (x : OD ) → y < X ∧ y < od→ord x } |
265 -- L (Φ 0) = Φ | 240 -- L (Φ 0) = Φ |
266 -- L (OSuc lv n) = { Def ( L n ) } | 241 -- L (OSuc lv n) = { Def ( L n ) } |
267 -- L (Φ (Suc n)) = Union (L α) (α < Φ (Suc n) ) | 242 -- L (Φ (Suc n)) = Union (L α) (α < Φ (Suc n) ) |
268 L : {n : Level} → (α : Ordinal {suc n}) → OD {suc n} | 243 -- L : {n : Level} → (α : Ordinal ) → OD |
269 L {n} record { lv = Zero ; ord = (Φ .0) } = od∅ | 244 -- L record { lv = Zero ; ord = (Φ .0) } = od∅ |
270 L {n} record { lv = lx ; ord = (OSuc lv ox) } = Def ( L {n} ( record { lv = lx ; ord = ox } ) ) | 245 -- L record { lv = lx ; ord = (OSuc lv ox) } = Def ( L ( record { lv = lx ; ord = ox } ) ) |
271 L {n} record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) | 246 -- L record { lv = (Suc lx) ; ord = (Φ (Suc lx)) } = -- Union ( L α ) |
272 cseq ( Ord (od→ord (L {n} (record { lv = lx ; ord = Φ lx })))) | 247 -- cseq ( Ord (od→ord (L (record { lv = lx ; ord = Φ lx })))) |
273 | 248 |
274 -- L0 : {n : Level} → (α : Ordinal {suc n}) → L (osuc α) ∋ L α | 249 -- L0 : {n : Level} → (α : Ordinal ) → L (osuc α) ∋ L α |
275 -- L1 : {n : Level} → (α β : Ordinal {suc n}) → α o< β → ∀ (x : OD {suc n}) → L α ∋ x → L β ∋ x | 250 -- L1 : {n : Level} → (α β : Ordinal ) → α o< β → ∀ (x : OD ) → L α ∋ x → L β ∋ x |
276 | 251 |
277 OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} | 252 OD→ZF : ZF |
278 OD→ZF {n} = record { | 253 OD→ZF = record { |
279 ZFSet = OD {suc n} | 254 ZFSet = OD |
280 ; _∋_ = _∋_ | 255 ; _∋_ = _∋_ |
281 ; _≈_ = _==_ | 256 ; _≈_ = _==_ |
282 ; ∅ = od∅ | 257 ; ∅ = od∅ |
283 ; _,_ = _,_ | 258 ; _,_ = _,_ |
284 ; Union = Union | 259 ; Union = Union |
286 ; Select = Select | 261 ; Select = Select |
287 ; Replace = Replace | 262 ; Replace = Replace |
288 ; infinite = infinite | 263 ; infinite = infinite |
289 ; isZF = isZF | 264 ; isZF = isZF |
290 } where | 265 } where |
291 ZFSet = OD {suc n} | 266 ZFSet = OD |
292 Select : (X : OD {suc n} ) → ((x : OD {suc n} ) → Set (suc n) ) → OD {suc n} | 267 Select : (X : OD ) → ((x : OD ) → Set n ) → OD |
293 Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) } | 268 Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) } |
294 Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n} | 269 Replace : OD → (OD → OD ) → OD |
295 Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) ∧ def (in-codomain X ψ) x } | 270 Replace X ψ = record { def = λ x → (x o< sup-o ( λ x → od→ord (ψ (ord→od x )))) ∧ def (in-codomain X ψ) x } |
296 _,_ : OD {suc n} → OD {suc n} → OD {suc n} | 271 _,_ : OD → OD → OD |
297 x , y = Ord (omax (od→ord x) (od→ord y)) | 272 x , y = Ord (omax (od→ord x) (od→ord y)) |
298 _∩_ : ( A B : ZFSet ) → ZFSet | 273 _∩_ : ( A B : ZFSet ) → ZFSet |
299 A ∩ B = record { def = λ x → def A x ∧ def B x } | 274 A ∩ B = record { def = λ x → def A x ∧ def B x } |
300 Union : OD {suc n} → OD {suc n} | 275 Union : OD → OD |
301 Union U = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((def U u) ∧ (def (ord→od u) x))) } | 276 Union U = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((def U u) ∧ (def (ord→od u) x))) } |
302 _∈_ : ( A B : ZFSet ) → Set (suc n) | 277 _∈_ : ( A B : ZFSet ) → Set n |
303 A ∈ B = B ∋ A | 278 A ∈ B = B ∋ A |
304 Power : OD {suc n} → OD {suc n} | 279 Power : OD → OD |
305 Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x ) | 280 Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x ) |
306 {_} : ZFSet → ZFSet | 281 {_} : ZFSet → ZFSet |
307 { x } = ( x , x ) | 282 { x } = ( x , x ) |
308 | 283 |
309 data infinite-d : ( x : Ordinal {suc n} ) → Set (suc n) where | 284 data infinite-d : ( x : Ordinal ) → Set n where |
310 iφ : infinite-d o∅ | 285 iφ : infinite-d o∅ |
311 isuc : {x : Ordinal {suc n} } → infinite-d x → | 286 isuc : {x : Ordinal } → infinite-d x → |
312 infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) )) | 287 infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) )) |
313 | 288 |
314 infinite : OD {suc n} | 289 infinite : OD |
315 infinite = record { def = λ x → infinite-d x } | 290 infinite = record { def = λ x → infinite-d x } |
316 | 291 |
317 infixr 200 _∈_ | 292 infixr 200 _∈_ |
318 -- infixr 230 _∩_ _∪_ | 293 -- infixr 230 _∩_ _∪_ |
319 isZF : IsZF (OD {suc n}) _∋_ _==_ od∅ _,_ Union Power Select Replace infinite | 294 isZF : IsZF (OD ) _∋_ _==_ od∅ _,_ Union Power Select Replace infinite |
320 isZF = record { | 295 isZF = record { |
321 isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans } | 296 isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans } |
322 ; pair = pair | 297 ; pair = pair |
323 ; union→ = union→ | 298 ; union→ = union→ |
324 ; union← = union← | 299 ; union← = union← |
325 ; empty = empty | 300 ; empty = empty |
326 ; power→ = power→ | 301 ; power→ = power→ |
327 ; power← = power← | 302 ; power← = power← |
328 ; extensionality = λ {A} {B} {w} → extensionality {A} {B} {w} | 303 ; extensionality = λ {A} {B} {w} → extensionality {A} {B} {w} |
329 ; ε-induction = ε-induction | 304 -- ; ε-induction = {!!} |
330 ; infinity∅ = infinity∅ | 305 ; infinity∅ = infinity∅ |
331 ; infinity = infinity | 306 ; infinity = infinity |
332 ; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y} | 307 ; selection = λ {X} {ψ} {y} → selection {X} {ψ} {y} |
333 ; replacement← = replacement← | 308 ; replacement← = replacement← |
334 ; replacement→ = replacement→ | 309 ; replacement→ = replacement→ |
335 ; choice-func = choice-func | 310 ; choice-func = choice-func |
336 ; choice = choice | 311 ; choice = choice |
337 } where | 312 } where |
338 | 313 |
339 pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) | 314 pair : (A B : OD ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) |
340 proj1 (pair A B ) = omax-x {n} (od→ord A) (od→ord B) | 315 proj1 (pair A B ) = omax-x (od→ord A) (od→ord B) |
341 proj2 (pair A B ) = omax-y {n} (od→ord A) (od→ord B) | 316 proj2 (pair A B ) = omax-y (od→ord A) (od→ord B) |
342 | 317 |
343 empty : {n : Level } (x : OD {suc n} ) → ¬ (od∅ ∋ x) | 318 empty : (x : OD ) → ¬ (od∅ ∋ x) |
344 empty x (case1 ()) | 319 empty x = ¬x<0 |
345 empty x (case2 ()) | 320 |
346 | 321 o<→c< : {x y : Ordinal } {z : OD }→ x o< y → _⊆_ (Ord x) (Ord y) {z} |
347 o<→c< : {x y : Ordinal {suc n}} {z : OD {suc n}}→ x o< y → _⊆_ (Ord x) (Ord y) {z} | |
348 o<→c< lt lt1 = ordtrans lt1 lt | 322 o<→c< lt lt1 = ordtrans lt1 lt |
349 | 323 |
350 ⊆→o< : {x y : Ordinal {suc n}} → (∀ (z : OD) → _⊆_ (Ord x) (Ord y) {z} ) → x o< osuc y | 324 ⊆→o< : {x y : Ordinal } → (∀ (z : OD) → _⊆_ (Ord x) (Ord y) {z} ) → x o< osuc y |
351 ⊆→o< {x} {y} lt with trio< x y | 325 ⊆→o< {x} {y} lt with trio< x y |
352 ⊆→o< {x} {y} lt | tri< a ¬b ¬c = ordtrans a <-osuc | 326 ⊆→o< {x} {y} lt | tri< a ¬b ¬c = ordtrans a <-osuc |
353 ⊆→o< {x} {y} lt | tri≈ ¬a b ¬c = subst ( λ k → k o< osuc y) (sym b) <-osuc | 327 ⊆→o< {x} {y} lt | tri≈ ¬a b ¬c = subst ( λ k → k o< osuc y) (sym b) <-osuc |
354 ⊆→o< {x} {y} lt | tri> ¬a ¬b c with lt (ord→od y) (o<-subst c (sym diso) refl ) | 328 ⊆→o< {x} {y} lt | tri> ¬a ¬b c with lt (ord→od y) (o<-subst c (sym diso) refl ) |
355 ... | ttt = ⊥-elim ( o<¬≡ refl (o<-subst ttt diso refl )) | 329 ... | ttt = ⊥-elim ( o<¬≡ refl (o<-subst ttt diso refl )) |
360 union← : (X z : OD) (X∋z : Union X ∋ z) → ¬ ( (u : OD ) → ¬ ((X ∋ u) ∧ (u ∋ z ))) | 334 union← : (X z : OD) (X∋z : Union X ∋ z) → ¬ ( (u : OD ) → ¬ ((X ∋ u) ∧ (u ∋ z ))) |
361 union← X z UX∋z = TransFiniteExists _ lemma UX∋z where | 335 union← X z UX∋z = TransFiniteExists _ lemma UX∋z where |
362 lemma : {y : Ordinal} → def X y ∧ def (ord→od y) (od→ord z) → ¬ ((u : OD) → ¬ (X ∋ u) ∧ (u ∋ z)) | 336 lemma : {y : Ordinal} → def X y ∧ def (ord→od y) (od→ord z) → ¬ ((u : OD) → ¬ (X ∋ u) ∧ (u ∋ z)) |
363 lemma {y} xx not = not (ord→od y) record { proj1 = subst ( λ k → def X k ) (sym diso) (proj1 xx ) ; proj2 = proj2 xx } | 337 lemma {y} xx not = not (ord→od y) record { proj1 = subst ( λ k → def X k ) (sym diso) (proj1 xx ) ; proj2 = proj2 xx } |
364 | 338 |
365 ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y | 339 ψiso : {ψ : OD → Set n} {x y : OD } → ψ x → x ≡ y → ψ y |
366 ψiso {ψ} t refl = t | 340 ψiso {ψ} t refl = t |
367 selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) | 341 selection : {ψ : OD → Set n} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) |
368 selection {ψ} {X} {y} = record { | 342 selection {ψ} {X} {y} = record { |
369 proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) } | 343 proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) } |
370 ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } | 344 ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } |
371 } | 345 } |
372 replacement← : {ψ : OD → OD} (X x : OD) → X ∋ x → Replace X ψ ∋ ψ x | 346 replacement← : {ψ : OD → OD} (X x : OD) → X ∋ x → Replace X ψ ∋ ψ x |
390 --- | 364 --- |
391 --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A | 365 --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A |
392 --- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) Power X is a sup of all subset of A | 366 --- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) Power X is a sup of all subset of A |
393 -- | 367 -- |
394 -- | 368 -- |
395 ∩-≡ : { a b : OD {suc n} } → ({x : OD {suc n} } → (a ∋ x → b ∋ x)) → a == ( b ∩ a ) | 369 ∩-≡ : { a b : OD } → ({x : OD } → (a ∋ x → b ∋ x)) → a == ( b ∩ a ) |
396 ∩-≡ {a} {b} inc = record { | 370 ∩-≡ {a} {b} inc = record { |
397 eq→ = λ {x} x<a → record { proj2 = x<a ; | 371 eq→ = λ {x} x<a → record { proj2 = x<a ; |
398 proj1 = def-subst {suc n} {_} {_} {b} {x} (inc (def-subst {suc n} {_} {_} {a} {_} x<a refl (sym diso) )) refl diso } ; | 372 proj1 = def-subst {_} {_} {b} {x} (inc (def-subst {_} {_} {a} {_} x<a refl (sym diso) )) refl diso } ; |
399 eq← = λ {x} x<a∩b → proj2 x<a∩b } | 373 eq← = λ {x} x<a∩b → proj2 x<a∩b } |
400 -- | 374 -- |
401 -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t | 375 -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t |
402 -- Power A is a sup of ZFSubset A t, so Power A ∋ t | 376 -- Power A is a sup of ZFSubset A t, so Power A ∋ t |
403 -- | 377 -- |
404 ord-power← : (a : Ordinal ) (t : OD) → ({x : OD} → (t ∋ x → (Ord a) ∋ x)) → Def (Ord a) ∋ t | 378 ord-power← : (a : Ordinal ) (t : OD) → ({x : OD} → (t ∋ x → (Ord a) ∋ x)) → Def (Ord a) ∋ t |
405 ord-power← a t t→A = def-subst {suc n} {_} {_} {Def (Ord a)} {od→ord t} | 379 ord-power← a t t→A = def-subst {_} {_} {Def (Ord a)} {od→ord t} |
406 lemma refl (lemma1 lemma-eq )where | 380 lemma refl (lemma1 lemma-eq )where |
407 lemma-eq : ZFSubset (Ord a) t == t | 381 lemma-eq : ZFSubset (Ord a) t == t |
408 eq→ lemma-eq {z} w = proj2 w | 382 eq→ lemma-eq {z} w = proj2 w |
409 eq← lemma-eq {z} w = record { proj2 = w ; | 383 eq← lemma-eq {z} w = record { proj2 = w ; |
410 proj1 = def-subst {suc n} {_} {_} {(Ord a)} {z} | 384 proj1 = def-subst {_} {_} {(Ord a)} {z} |
411 ( t→A (def-subst {suc n} {_} {_} {t} {od→ord (ord→od z)} w refl (sym diso) )) refl diso } | 385 ( t→A (def-subst {_} {_} {t} {od→ord (ord→od z)} w refl (sym diso) )) refl diso } |
412 lemma1 : {n : Level } {a : Ordinal {suc n}} { t : OD {suc n}} | 386 lemma1 : {a : Ordinal } { t : OD } |
413 → (eq : ZFSubset (Ord a) t == t) → od→ord (ZFSubset (Ord a) (ord→od (od→ord t))) ≡ od→ord t | 387 → (eq : ZFSubset (Ord a) t == t) → od→ord (ZFSubset (Ord a) (ord→od (od→ord t))) ≡ od→ord t |
414 lemma1 {n} {a} {t} eq = subst (λ k → od→ord (ZFSubset (Ord a) k) ≡ od→ord t ) (sym oiso) (cong (λ k → od→ord k ) (==→o≡ eq )) | 388 lemma1 {a} {t} eq = subst (λ k → od→ord (ZFSubset (Ord a) k) ≡ od→ord t ) (sym oiso) (cong (λ k → od→ord k ) (==→o≡ eq )) |
415 lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset (Ord a) (ord→od x))) | 389 lemma : od→ord (ZFSubset (Ord a) (ord→od (od→ord t)) ) o< sup-o (λ x → od→ord (ZFSubset (Ord a) (ord→od x))) |
416 lemma = sup-o< | 390 lemma = sup-o< |
417 | 391 |
418 -- | 392 -- |
419 -- Every set in OD is a subset of Ordinals | 393 -- Every set in OD is a subset of Ordinals |
440 lemma0 : {x : OD} → t ∋ x → Ord a ∋ x | 414 lemma0 : {x : OD} → t ∋ x → Ord a ∋ x |
441 lemma0 {x} t∋x = c<→o< (t→A t∋x) | 415 lemma0 {x} t∋x = c<→o< (t→A t∋x) |
442 lemma3 : Def (Ord a) ∋ t | 416 lemma3 : Def (Ord a) ∋ t |
443 lemma3 = ord-power← a t lemma0 | 417 lemma3 = ord-power← a t lemma0 |
444 lt1 : od→ord (A ∩ ord→od (od→ord t)) o< sup-o (λ x → od→ord (A ∩ ord→od x)) | 418 lt1 : od→ord (A ∩ ord→od (od→ord t)) o< sup-o (λ x → od→ord (A ∩ ord→od x)) |
445 lt1 = sup-o< {suc n} {λ x → od→ord (A ∩ ord→od x)} {od→ord t} | 419 lt1 = sup-o< {λ x → od→ord (A ∩ ord→od x)} {od→ord t} |
446 lemma4 : (A ∩ ord→od (od→ord t)) ≡ t | 420 lemma4 : (A ∩ ord→od (od→ord t)) ≡ t |
447 lemma4 = let open ≡-Reasoning in begin | 421 lemma4 = let open ≡-Reasoning in begin |
448 A ∩ ord→od (od→ord t) | 422 A ∩ ord→od (od→ord t) |
449 ≡⟨ cong (λ k → A ∩ k) oiso ⟩ | 423 ≡⟨ cong (λ k → A ∩ k) oiso ⟩ |
450 A ∩ t | 424 A ∩ t |
451 ≡⟨ sym (==→o≡ ( ∩-≡ t→A )) ⟩ | 425 ≡⟨ sym (==→o≡ ( ∩-≡ t→A )) ⟩ |
452 t | 426 t |
453 ∎ | 427 ∎ |
454 lemma1 : od→ord t o< sup-o (λ x → od→ord (A ∩ ord→od x)) | 428 lemma1 : od→ord t o< sup-o (λ x → od→ord (A ∩ ord→od x)) |
455 lemma1 = subst (λ k → od→ord k o< sup-o (λ x → od→ord (A ∩ ord→od x))) | 429 lemma1 = subst (λ k → od→ord k o< sup-o (λ x → od→ord (A ∩ ord→od x))) |
456 lemma4 (sup-o< {suc n} {λ x → od→ord (A ∩ ord→od x)} {od→ord t}) | 430 lemma4 (sup-o< {λ x → od→ord (A ∩ ord→od x)} {od→ord t}) |
457 lemma2 : def (in-codomain (Def (Ord (od→ord A))) (_∩_ A)) (od→ord t) | 431 lemma2 : def (in-codomain (Def (Ord (od→ord A))) (_∩_ A)) (od→ord t) |
458 lemma2 not = ⊥-elim ( not (od→ord t) (record { proj1 = lemma3 ; proj2 = lemma6 }) ) where | 432 lemma2 not = ⊥-elim ( not (od→ord t) (record { proj1 = lemma3 ; proj2 = lemma6 }) ) where |
459 lemma6 : od→ord t ≡ od→ord (A ∩ ord→od (od→ord t)) | 433 lemma6 : od→ord t ≡ od→ord (A ∩ ord→od (od→ord t)) |
460 lemma6 = cong ( λ k → od→ord k ) (==→o≡ (subst (λ k → t == (A ∩ k)) (sym oiso) ( ∩-≡ t→A ))) | 434 lemma6 = cong ( λ k → od→ord k ) (==→o≡ (subst (λ k → t == (A ∩ k)) (sym oiso) ( ∩-≡ t→A ))) |
461 | 435 |
465 proj1 (regularity x not ) = x∋minimul x not | 439 proj1 (regularity x not ) = x∋minimul x not |
466 proj2 (regularity x not ) = record { eq→ = lemma1 ; eq← = λ {y} d → lemma2 {y} d } where | 440 proj2 (regularity x not ) = record { eq→ = lemma1 ; eq← = λ {y} d → lemma2 {y} d } where |
467 lemma1 : {x₁ : Ordinal} → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) x₁ → def od∅ x₁ | 441 lemma1 : {x₁ : Ordinal} → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) x₁ → def od∅ x₁ |
468 lemma1 {x₁} s = ⊥-elim ( minimul-1 x not (ord→od x₁) lemma3 ) where | 442 lemma1 {x₁} s = ⊥-elim ( minimul-1 x not (ord→od x₁) lemma3 ) where |
469 lemma3 : def (minimul x not) (od→ord (ord→od x₁)) ∧ def x (od→ord (ord→od x₁)) | 443 lemma3 : def (minimul x not) (od→ord (ord→od x₁)) ∧ def x (od→ord (ord→od x₁)) |
470 lemma3 = record { proj1 = def-subst {suc n} {_} {_} {minimul x not} {_} (proj1 s) refl (sym diso) | 444 lemma3 = record { proj1 = def-subst {_} {_} {minimul x not} {_} (proj1 s) refl (sym diso) |
471 ; proj2 = proj2 (proj2 s) } | 445 ; proj2 = proj2 (proj2 s) } |
472 lemma2 : {x₁ : Ordinal} → def od∅ x₁ → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) x₁ | 446 lemma2 : {x₁ : Ordinal} → def od∅ x₁ → def (Select (minimul x not) (λ x₂ → (minimul x not ∋ x₂) ∧ (x ∋ x₂))) x₁ |
473 lemma2 {y} d = ⊥-elim (empty (ord→od y) (def-subst {suc n} {_} {_} {od∅} {od→ord (ord→od y)} d refl (sym diso) )) | 447 lemma2 {y} d = ⊥-elim (empty (ord→od y) (def-subst {_} {_} {od∅} {od→ord (ord→od y)} d refl (sym diso) )) |
474 | 448 |
475 extensionality0 : {A B : OD {suc n}} → ((z : OD) → (A ∋ z) ⇔ (B ∋ z)) → A == B | 449 extensionality0 : {A B : OD } → ((z : OD) → (A ∋ z) ⇔ (B ∋ z)) → A == B |
476 eq→ (extensionality0 {A} {B} eq ) {x} d = def-iso {suc n} {A} {B} (sym diso) (proj1 (eq (ord→od x))) d | 450 eq→ (extensionality0 {A} {B} eq ) {x} d = def-iso {A} {B} (sym diso) (proj1 (eq (ord→od x))) d |
477 eq← (extensionality0 {A} {B} eq ) {x} d = def-iso {suc n} {B} {A} (sym diso) (proj2 (eq (ord→od x))) d | 451 eq← (extensionality0 {A} {B} eq ) {x} d = def-iso {B} {A} (sym diso) (proj2 (eq (ord→od x))) d |
478 | 452 |
479 extensionality : {A B w : OD {suc n} } → ((z : OD {suc n}) → (A ∋ z) ⇔ (B ∋ z)) → (w ∋ A) ⇔ (w ∋ B) | 453 extensionality : {A B w : OD } → ((z : OD ) → (A ∋ z) ⇔ (B ∋ z)) → (w ∋ A) ⇔ (w ∋ B) |
480 proj1 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) ( ==→o≡ (extensionality0 {A} {B} eq) ) d | 454 proj1 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) ( ==→o≡ (extensionality0 {A} {B} eq) ) d |
481 proj2 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) (sym ( ==→o≡ (extensionality0 {A} {B} eq) )) d | 455 proj2 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) (sym ( ==→o≡ (extensionality0 {A} {B} eq) )) d |
482 | 456 |
483 infinity∅ : infinite ∋ od∅ {suc n} | 457 infinity∅ : infinite ∋ od∅ |
484 infinity∅ = def-subst {suc n} {_} {_} {infinite} {od→ord (od∅ {suc n})} iφ refl lemma where | 458 infinity∅ = def-subst {_} {_} {infinite} {od→ord (od∅ )} iφ refl lemma where |
485 lemma : o∅ ≡ od→ord od∅ | 459 lemma : o∅ ≡ od→ord od∅ |
486 lemma = let open ≡-Reasoning in begin | 460 lemma = let open ≡-Reasoning in begin |
487 o∅ | 461 o∅ |
488 ≡⟨ sym diso ⟩ | 462 ≡⟨ sym diso ⟩ |
489 od→ord ( ord→od o∅ ) | 463 od→ord ( ord→od o∅ ) |
490 ≡⟨ cong ( λ k → od→ord k ) o∅≡od∅ ⟩ | 464 ≡⟨ cong ( λ k → od→ord k ) o∅≡od∅ ⟩ |
491 od→ord od∅ | 465 od→ord od∅ |
492 ∎ | 466 ∎ |
493 infinity : (x : OD) → infinite ∋ x → infinite ∋ Union (x , (x , x )) | 467 infinity : (x : OD) → infinite ∋ x → infinite ∋ Union (x , (x , x )) |
494 infinity x lt = def-subst {suc n} {_} {_} {infinite} {od→ord (Union (x , (x , x )))} ( isuc {od→ord x} lt ) refl lemma where | 468 infinity x lt = def-subst {_} {_} {infinite} {od→ord (Union (x , (x , x )))} ( isuc {od→ord x} lt ) refl lemma where |
495 lemma : od→ord (Union (ord→od (od→ord x) , (ord→od (od→ord x) , ord→od (od→ord x)))) | 469 lemma : od→ord (Union (ord→od (od→ord x) , (ord→od (od→ord x) , ord→od (od→ord x)))) |
496 ≡ od→ord (Union (x , (x , x))) | 470 ≡ od→ord (Union (x , (x , x))) |
497 lemma = cong (λ k → od→ord (Union ( k , ( k , k ) ))) oiso | 471 lemma = cong (λ k → od→ord (Union ( k , ( k , k ) ))) oiso |
498 | 472 |
499 -- Axiom of choice ( is equivalent to the existence of minimul in our case ) | 473 -- Axiom of choice ( is equivalent to the existence of minimul in our case ) |
500 -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] | 474 -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] |
501 choice-func : (X : OD {suc n} ) → {x : OD } → ¬ ( x == od∅ ) → ( X ∋ x ) → OD | 475 choice-func : (X : OD ) → {x : OD } → ¬ ( x == od∅ ) → ( X ∋ x ) → OD |
502 choice-func X {x} not X∋x = minimul x not | 476 choice-func X {x} not X∋x = minimul x not |
503 choice : (X : OD {suc n} ) → {A : OD } → ( X∋A : X ∋ A ) → (not : ¬ ( A == od∅ )) → A ∋ choice-func X not X∋A | 477 choice : (X : OD ) → {A : OD } → ( X∋A : X ∋ A ) → (not : ¬ ( A == od∅ )) → A ∋ choice-func X not X∋A |
504 choice X {A} X∋A not = x∋minimul A not | 478 choice X {A} X∋A not = x∋minimul A not |
505 | 479 |
506 -- | |
507 -- another form of regularity | |
508 -- | |
509 ε-induction : {n m : Level} { ψ : OD {suc n} → Set m} | |
510 → ( {x : OD {suc n} } → ({ y : OD {suc n} } → x ∋ y → ψ y ) → ψ x ) | |
511 → (x : OD {suc n} ) → ψ x | |
512 ε-induction {n} {m} {ψ} ind x = subst (λ k → ψ k ) oiso (ε-induction-ord (lv (osuc (od→ord x))) (ord (osuc (od→ord x))) <-osuc) where | |
513 ε-induction-ord : (lx : Nat) ( ox : OrdinalD {suc n} lx ) {ly : Nat} {oy : OrdinalD {suc n} ly } | |
514 → (ly < lx) ∨ (oy d< ox ) → ψ (ord→od (record { lv = ly ; ord = oy } ) ) | |
515 ε-induction-ord lx (OSuc lx ox) {ly} {oy} y<x = | |
516 ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → subst (λ k → ψ k ) oiso (ε-induction-ord lx ox (lemma y lt ))) where | |
517 lemma : (z : OD) → ord→od record { lv = ly ; ord = oy } ∋ z → od→ord z o< record { lv = lx ; ord = ox } | |
518 lemma z lt with osuc-≡< y<x | |
519 lemma z lt | case1 refl = o<-subst (c<→o< lt) refl diso | |
520 lemma z lt | case2 lt1 = ordtrans (o<-subst (c<→o< lt) refl diso) lt1 | |
521 ε-induction-ord (Suc lx) (Φ (Suc lx)) {ly} {oy} (case1 y<sox ) = | |
522 ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → lemma y lt ) where | |
523 -- | |
524 -- if lv of z if less than x Ok | |
525 -- else lv z = lv x. We can create OSuc of z which is larger than z and less than x in lemma | |
526 -- | |
527 -- lx Suc lx (1) lz(a) <lx by case1 | |
528 -- ly(1) ly(2) (2) lz(b) <lx by case1 | |
529 -- lz(a) lz(b) lz(c) lz(c) <lx by case2 ( ly==lz==lx) | |
530 -- | |
531 lemma0 : { lx ly : Nat } → ly < Suc lx → lx < ly → ⊥ | |
532 lemma0 {Suc lx} {Suc ly} (s≤s lt1) (s≤s lt2) = lemma0 lt1 lt2 | |
533 lemma1 : {n : Level } {ly : Nat} {oy : OrdinalD {suc n} ly} → lv (od→ord (ord→od (record { lv = ly ; ord = oy }))) ≡ ly | |
534 lemma1 {n} {ly} {oy} = let open ≡-Reasoning in begin | |
535 lv (od→ord (ord→od (record { lv = ly ; ord = oy }))) | |
536 ≡⟨ cong ( λ k → lv k ) diso ⟩ | |
537 lv (record { lv = ly ; ord = oy }) | |
538 ≡⟨⟩ | |
539 ly | |
540 ∎ | |
541 lemma : (z : OD) → ord→od record { lv = ly ; ord = oy } ∋ z → ψ z | |
542 lemma z lt with c<→o< {suc n} {z} {ord→od (record { lv = ly ; ord = oy })} lt | |
543 lemma z lt | case1 lz<ly with <-cmp lx ly | |
544 lemma z lt | case1 lz<ly | tri< a ¬b ¬c = ⊥-elim ( lemma0 y<sox a) -- can't happen | |
545 lemma z lt | case1 lz<ly | tri≈ ¬a refl ¬c = -- ly(1) | |
546 subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → lv (od→ord z) < k ) lemma1 lz<ly ) )) | |
547 lemma z lt | case1 lz<ly | tri> ¬a ¬b c = -- lz(a) | |
548 subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (<-trans lz<ly (subst (λ k → k < lx ) (sym lemma1) c)))) | |
549 lemma z lt | case2 lz=ly with <-cmp lx ly | |
550 lemma z lt | case2 lz=ly | tri< a ¬b ¬c = ⊥-elim ( lemma0 y<sox a) -- can't happen | |
551 lemma z lt | case2 lz=ly | tri> ¬a ¬b c with d<→lv lz=ly -- lz(b) | |
552 ... | eq = subst (λ k → ψ k ) oiso | |
553 (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → k < lx ) (trans (sym lemma1)(sym eq) ) c ))) | |
554 lemma z lt | case2 lz=ly | tri≈ ¬a lx=ly ¬c with d<→lv lz=ly -- lz(c) | |
555 ... | eq = lemma6 {ly} {Φ lx} {oy} lx=ly (sym (subst (λ k → lv (od→ord z) ≡ k) lemma1 eq)) where | |
556 lemma5 : (ox : OrdinalD lx) → (lv (od→ord z) < lx) ∨ (ord (od→ord z) d< ox) → ψ z | |
557 lemma5 ox lt = subst (λ k → ψ k ) oiso (ε-induction-ord lx ox lt ) | |
558 lemma6 : { ly : Nat } { ox : OrdinalD {suc n} lx } { oy : OrdinalD {suc n} ly } → | |
559 lx ≡ ly → ly ≡ lv (od→ord z) → ψ z | |
560 lemma6 {ly} {ox} {oy} refl refl = lemma5 (OSuc lx (ord (od→ord z)) ) (case2 s<refl) | |
561 | |
562 --- | |
563 --- With assuption of OD is ordered, p ∨ ( ¬ p ) <=> axiom of choice | |
564 --- | |
565 record choiced {n : Level} ( X : OD {suc n}) : Set (suc (suc n)) where | |
566 field | |
567 a-choice : OD {suc n} | |
568 is-in : X ∋ a-choice | |
569 choice-func' : (X : OD {suc n} ) → (p∨¬p : { n : Level } → ( p : Set (suc n) ) → p ∨ ( ¬ p )) → ¬ ( X == od∅ ) → choiced X | |
570 choice-func' X p∨¬p not = have_to_find | |
571 where | |
572 ψ : ( ox : Ordinal {suc n}) → Set (suc (suc n)) | |
573 ψ ox = (( x : Ordinal {suc n}) → x o< ox → ( ¬ def X x )) ∨ choiced X | |
574 lemma-ord : ( ox : Ordinal {suc n} ) → ψ ox | |
575 lemma-ord ox = TransFinite {n} {suc (suc n)} {ψ} caseΦ caseOSuc ox where | |
576 ∋-p' : (A x : OD {suc n} ) → Dec ( A ∋ x ) | |
577 ∋-p' A x with p∨¬p ( A ∋ x ) | |
578 ∋-p' A x | case1 t = yes t | |
579 ∋-p' A x | case2 t = no t | |
580 ∀-imply-or : {n : Level} {A : Ordinal {suc n} → Set (suc n) } {B : Set (suc (suc n)) } | |
581 → ((x : Ordinal {suc n}) → A x ∨ B) → ((x : Ordinal {suc n}) → A x) ∨ B | |
582 ∀-imply-or {n} {A} {B} ∀AB with p∨¬p ((x : Ordinal {suc n}) → A x) | |
583 ∀-imply-or {n} {A} {B} ∀AB | case1 t = case1 t | |
584 ∀-imply-or {n} {A} {B} ∀AB | case2 x = case2 (lemma x) where | |
585 lemma : ¬ ((x : Ordinal {suc n}) → A x) → B | |
586 lemma not with p∨¬p B | |
587 lemma not | case1 b = b | |
588 lemma not | case2 ¬b = ⊥-elim (not (λ x → dont-orb (∀AB x) ¬b )) | |
589 caseΦ : (lx : Nat) → ( (x : Ordinal {suc n} ) → x o< ordinal lx (Φ lx) → ψ x) → ψ (ordinal lx (Φ lx) ) | |
590 caseΦ lx prev with ∋-p' X ( ord→od (ordinal lx (Φ lx) )) | |
591 caseΦ lx prev | yes p = case2 ( record { a-choice = ord→od (ordinal lx (Φ lx)) ; is-in = p } ) | |
592 caseΦ lx prev | no ¬p = lemma where | |
593 lemma1 : (x : Ordinal) → (((Suc (lv x) ≤ lx) ∨ (ord x d< Φ lx) → def X x → ⊥) ∨ choiced X) | |
594 lemma1 x with trio< x (ordinal lx (Φ lx)) | |
595 lemma1 x | tri< a ¬b ¬c with prev (osuc x) (lemma2 a) where | |
596 lemma2 : x o< (ordinal lx (Φ lx)) → osuc x o< ordinal lx (Φ lx) | |
597 lemma2 (case1 lt) = case1 lt | |
598 lemma1 x | tri< a ¬b ¬c | case2 found = case2 found | |
599 lemma1 x | tri< a ¬b ¬c | case1 not_found = case1 ( λ lt df → not_found x <-osuc df ) | |
600 lemma1 x | tri≈ ¬a refl ¬c = case1 ( λ lt → ⊥-elim (o<¬≡ refl lt )) | |
601 lemma1 x | tri> ¬a ¬b c = case1 ( λ lt → ⊥-elim (o<> lt c )) | |
602 lemma : ((x : Ordinal) → (Suc (lv x) ≤ lx) ∨ (ord x d< Φ lx) → def X x → ⊥) ∨ choiced X | |
603 lemma = ∀-imply-or lemma1 | |
604 caseOSuc : (lx : Nat) (x : OrdinalD lx) → ψ ( ordinal lx x ) → ψ ( ordinal lx (OSuc lx x) ) | |
605 caseOSuc lx x prev with ∋-p' X (ord→od record { lv = lx ; ord = x } ) | |
606 caseOSuc lx x prev | yes p = case2 (record { a-choice = ord→od record { lv = lx ; ord = x } ; is-in = p }) | |
607 caseOSuc lx x (case1 not_found) | no ¬p = case1 lemma where | |
608 lemma : (y : Ordinal) → (Suc (lv y) ≤ lx) ∨ (ord y d< OSuc lx x) → def X y → ⊥ | |
609 lemma y lt with trio< y (ordinal lx x ) | |
610 lemma y lt | tri< a ¬b ¬c = not_found y a | |
611 lemma y lt | tri≈ ¬a refl ¬c = subst (λ k → def X k → ⊥ ) diso ¬p | |
612 lemma y lt | tri> ¬a ¬b c with osuc-≡< lt | |
613 lemma y lt | tri> ¬a ¬b c | case1 refl = ⊥-elim ( ¬b refl ) | |
614 lemma y lt | tri> ¬a ¬b c | case2 lt1 = ⊥-elim (o<> c lt1 ) | |
615 caseOSuc lx x (case2 found) | no ¬p = case2 found | |
616 have_to_find : choiced X | |
617 have_to_find with lemma-ord (od→ord X ) | |
618 have_to_find | t = dont-or t ¬¬X∋x where | |
619 ¬¬X∋x : ¬ ((x : Ordinal) → (Suc (lv x) ≤ lv (od→ord X)) ∨ (ord x d< ord (od→ord X)) → def X x → ⊥) | |
620 ¬¬X∋x nn = not record { | |
621 eq→ = λ {x} lt → ⊥-elim (nn x (def→o< lt) lt) | |
622 ; eq← = λ {x} lt → ⊥-elim ( ¬x<0 lt ) | |
623 } | |
624 |