Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison src/ODC.agda @ 447:364d738f871d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 13 Mar 2022 14:44:24 +0900 |
parents | a5f8084b8368 |
children | 5acf6483a9e3 |
comparison
equal
deleted
inserted
replaced
446:eb4049abad70 | 447:364d738f871d |
---|---|
93 power→⊆ : ( A t : HOD) → Power A ∋ t → t ⊆ A | 93 power→⊆ : ( A t : HOD) → Power A ∋ t → t ⊆ A |
94 power→⊆ A t PA∋t = record { incl = λ {x} t∋x → double-neg-eilm (t1 t∋x) } where | 94 power→⊆ A t PA∋t = record { incl = λ {x} t∋x → double-neg-eilm (t1 t∋x) } where |
95 t1 : {x : HOD } → t ∋ x → ¬ ¬ (A ∋ x) | 95 t1 : {x : HOD } → t ∋ x → ¬ ¬ (A ∋ x) |
96 t1 = power→ A t PA∋t | 96 t1 = power→ A t PA∋t |
97 | 97 |
98 power-∩ : { A x y : HOD } → Power A ∋ x → Power A ∋ y → Power A ∋ ( x ∩ y ) | |
99 power-∩ {A} {x} {y} ax ay = power← A (x ∩ y) p01 where | |
100 p01 : {z : HOD} → (x ∩ y) ∋ z → A ∋ z | |
101 p01 {z} xyz = double-neg-eilm ( power→ A x ax (proj1 xyz )) | |
102 | |
98 OrdP : ( x : Ordinal ) ( y : HOD ) → Dec ( Ord x ∋ y ) | 103 OrdP : ( x : Ordinal ) ( y : HOD ) → Dec ( Ord x ∋ y ) |
99 OrdP x y with trio< x (& y) | 104 OrdP x y with trio< x (& y) |
100 OrdP x y | tri< a ¬b ¬c = no ¬c | 105 OrdP x y | tri< a ¬b ¬c = no ¬c |
101 OrdP x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl ) | 106 OrdP x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl ) |
102 OrdP x y | tri> ¬a ¬b c = yes c | 107 OrdP x y | tri> ¬a ¬b c = yes c |