comparison src/zorn.agda @ 547:379bd9b4610c

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 27 Apr 2022 23:21:21 +0900
parents 3234a5f6bfcf
children 5ad7a31df4f4
comparison
equal deleted inserted replaced
546:3234a5f6bfcf 547:379bd9b4610c
190 190
191 SupCond : ( A B : HOD) → (B⊆A : B ⊆ A) → IsTotalOrderSet B → Set (Level.suc n) 191 SupCond : ( A B : HOD) → (B⊆A : B ⊆ A) → IsTotalOrderSet B → Set (Level.suc n)
192 SupCond A B _ _ = SUP A B 192 SupCond A B _ _ = SUP A B
193 193
194 record ZChain ( A : HOD ) {x : Ordinal} (ax : odef A x) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f ) 194 record ZChain ( A : HOD ) {x : Ordinal} (ax : odef A x) ( f : Ordinal → Ordinal ) (mf : ≤-monotonic-f A f )
195 (sup : (C : Ordinal ) → (* C ⊆ A) → IsTotalOrderSet (* C) → Ordinal) : Set (Level.suc n) where 195 (sup : (C : Ordinal ) → (* C ⊆ A) → IsTotalOrderSet (* C) → Ordinal) ( z : Ordinal ) : Set (Level.suc n) where
196 field 196 field
197 chain : HOD 197 chain : HOD
198 chain⊆A : chain ⊆ A 198 chain⊆A : chain ⊆ A
199 chain∋x : odef chain x 199 chain∋x : odef chain x
200 f-total : IsTotalOrderSet chain 200 f-total : IsTotalOrderSet chain
201 f-next : {a : Ordinal } → odef chain a → odef chain (f a) 201 f-next : {a : Ordinal } → odef chain a → odef chain (f a)
202 f-immediate : { x y : Ordinal } → odef chain x → odef chain y → ¬ ( ( * x < * y ) ∧ ( * y < * (f x )) ) 202 f-immediate : { x y : Ordinal } → odef chain x → odef chain y → ¬ ( ( * x < * y ) ∧ ( * y < * (f x )) )
203 is-max : {a b : Ordinal } → (ca : odef chain a ) → (ba : odef A b) 203 is-max : {a b : Ordinal } → (ca : odef chain a ) → a o< z → (ba : odef A b)
204 → Prev< A chain ba f 204 → Prev< A chain ba f
205 ∨ (sup (& chain) (subst (λ k → k ⊆ A) (sym *iso) chain⊆A) (subst (λ k → IsTotalOrderSet k) (sym *iso) f-total) ≡ b ) 205 ∨ (sup (& chain) (subst (λ k → k ⊆ A) (sym *iso) chain⊆A) (subst (λ k → IsTotalOrderSet k) (sym *iso) f-total) ≡ b )
206 → * a < * b → odef chain b 206 → * a < * b → odef chain b
207 207
208 Zorn-lemma : { A : HOD } 208 Zorn-lemma : { A : HOD }
221 z07 {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) 221 z07 {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p )))
222 s : HOD 222 s : HOD
223 s = ODC.minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) 223 s = ODC.minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A ))
224 sa : A ∋ * ( & s ) 224 sa : A ∋ * ( & s )
225 sa = subst (λ k → odef A (& k) ) (sym *iso) ( ODC.x∋minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) ) 225 sa = subst (λ k → odef A (& k) ) (sym *iso) ( ODC.x∋minimal O A (λ eq → ¬x<0 ( subst (λ k → o∅ o< k ) (=od∅→≡o∅ eq) 0<A )) )
226 s<A : & s o< & A
227 s<A = c<→o< (subst (λ k → odef A (& k) ) *iso sa )
226 HasMaximal : HOD 228 HasMaximal : HOD
227 HasMaximal = record { od = record { def = λ x → odef A x ∧ ( (m : Ordinal) → odef A m → ¬ (* x < * m)) } ; odmax = & A ; <odmax = z07 } 229 HasMaximal = record { od = record { def = λ x → odef A x ∧ ( (m : Ordinal) → odef A m → ¬ (* x < * m)) } ; odmax = & A ; <odmax = z07 }
228 no-maximum : HasMaximal =h= od∅ → (x : Ordinal) → odef A x ∧ ((m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m) )) → ⊥ 230 no-maximum : HasMaximal =h= od∅ → (x : Ordinal) → odef A x ∧ ((m : Ordinal) → odef A m → odef A x ∧ (¬ (* x < * m) )) → ⊥
229 no-maximum nomx x P = ¬x<0 (eq→ nomx {x} ⟪ proj1 P , (λ m ma p → proj2 ( proj2 P m ma ) p ) ⟫ ) 231 no-maximum nomx x P = ¬x<0 (eq→ nomx {x} ⟪ proj1 P , (λ m ma p → proj2 ( proj2 P m ma ) p ) ⟫ )
230 Gtx : { x : HOD} → A ∋ x → HOD 232 Gtx : { x : HOD} → A ∋ x → HOD
254 cf-is-<-monotonic : (nmx : ¬ Maximal A ) → (x : Ordinal) → odef A x → ( * x < * (cf nmx x) ) ∧ odef A (cf nmx x ) 256 cf-is-<-monotonic : (nmx : ¬ Maximal A ) → (x : Ordinal) → odef A x → ( * x < * (cf nmx x) ) ∧ odef A (cf nmx x )
255 cf-is-<-monotonic nmx x ax = ⟪ proj2 (is-cf nmx ax ) , proj1 (is-cf nmx ax ) ⟫ 257 cf-is-<-monotonic nmx x ax = ⟪ proj2 (is-cf nmx ax ) , proj1 (is-cf nmx ax ) ⟫
256 cf-is-≤-monotonic : (nmx : ¬ Maximal A ) → ≤-monotonic-f A ( cf nmx ) 258 cf-is-≤-monotonic : (nmx : ¬ Maximal A ) → ≤-monotonic-f A ( cf nmx )
257 cf-is-≤-monotonic nmx x ax = ⟪ case2 (proj1 ( cf-is-<-monotonic nmx x ax )) , proj2 ( cf-is-<-monotonic nmx x ax ) ⟫ 259 cf-is-≤-monotonic nmx x ax = ⟪ case2 (proj1 ( cf-is-<-monotonic nmx x ax )) , proj2 ( cf-is-<-monotonic nmx x ax ) ⟫
258 260
259 zsup : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f) → (zc : ZChain A sa f mf supO ) → SUP A (ZChain.chain zc) 261 zsup : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f) → (zc : ZChain A sa f mf supO (& A) ) → SUP A (ZChain.chain zc)
260 zsup f mf zc = supP (ZChain.chain zc) (ZChain.chain⊆A zc) ( ZChain.f-total zc ) 262 zsup f mf zc = supP (ZChain.chain zc) (ZChain.chain⊆A zc) ( ZChain.f-total zc )
261 A∋zsup : (nmx : ¬ Maximal A ) (zc : ZChain A sa (cf nmx) (cf-is-≤-monotonic nmx) supO ) 263 A∋zsup : (nmx : ¬ Maximal A ) (zc : ZChain A sa (cf nmx) (cf-is-≤-monotonic nmx) supO (& A) )
262 → A ∋ * ( & ( SUP.sup (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc ) )) 264 → A ∋ * ( & ( SUP.sup (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc ) ))
263 A∋zsup nmx zc = subst (λ k → odef A (& k )) (sym *iso) ( SUP.A∋maximal (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc ) ) 265 A∋zsup nmx zc = subst (λ k → odef A (& k )) (sym *iso) ( SUP.A∋maximal (zsup (cf nmx) (cf-is-≤-monotonic nmx) zc ) )
264 sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc : ZChain A (subst (λ k → odef A k ) &iso sa ) f mf supO ) → SUP A (* (& (ZChain.chain zc))) 266 sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc : ZChain A (subst (λ k → odef A k ) &iso sa ) f mf supO (& A) ) → SUP A (* (& (ZChain.chain zc)))
265 sp0 f mf zc = supP (* (& (ZChain.chain zc))) (subst (λ k → k ⊆ A) (sym *iso) (ZChain.chain⊆A zc)) 267 sp0 f mf zc = supP (* (& (ZChain.chain zc))) (subst (λ k → k ⊆ A) (sym *iso) (ZChain.chain⊆A zc))
266 (subst (λ k → IsTotalOrderSet k) (sym *iso) (ZChain.f-total zc) ) 268 (subst (λ k → IsTotalOrderSet k) (sym *iso) (ZChain.f-total zc) )
267 zc< : {x y z : Ordinal} → {P : Set n} → (x o< y → P) → x o< z → z o< y → P 269 zc< : {x y z : Ordinal} → {P : Set n} → (x o< y → P) → x o< z → z o< y → P
268 zc< {x} {y} {z} {P} prev x<z z<y = prev (ordtrans x<z z<y) 270 zc< {x} {y} {z} {P} prev x<z z<y = prev (ordtrans x<z z<y)
269 271
270 --- 272 ---
271 --- sup is fix point in maximum chain 273 --- sup is fix point in maximum chain
272 --- 274 ---
273 z03 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc : ZChain A (subst (λ k → odef A k ) &iso sa ) f mf supO ) 275 z03 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc : ZChain A (subst (λ k → odef A k ) &iso sa ) f mf supO (& A) )
274 → f (& (SUP.sup (sp0 f mf zc ))) ≡ & (SUP.sup (sp0 f mf zc )) 276 → f (& (SUP.sup (sp0 f mf zc ))) ≡ & (SUP.sup (sp0 f mf zc ))
275 z03 f mf zc = z14 where 277 z03 f mf zc = z14 where
276 chain = ZChain.chain zc 278 chain = ZChain.chain zc
277 sp1 = sp0 f mf zc 279 sp1 = sp0 f mf zc
278 z10 : {a b : Ordinal } → (ca : odef chain a ) → (ab : odef A b ) 280 z10 : {a b : Ordinal } → (ca : odef chain a ) → a o< & A → (ab : odef A b )
279 → Prev< A chain ab f 281 → Prev< A chain ab f
280 ∨ (supO (& chain) (subst (λ k → k ⊆ A) (sym *iso) (ZChain.chain⊆A zc)) (subst (λ k → IsTotalOrderSet k) (sym *iso) (ZChain.f-total zc)) ≡ b ) 282 ∨ (supO (& chain) (subst (λ k → k ⊆ A) (sym *iso) (ZChain.chain⊆A zc)) (subst (λ k → IsTotalOrderSet k) (sym *iso) (ZChain.f-total zc)) ≡ b )
281 → * a < * b → odef chain b 283 → * a < * b → odef chain b
282 z10 = ZChain.is-max zc 284 z10 = ZChain.is-max zc
283 z11 : & (SUP.sup sp1) o< & A 285 z11 : & (SUP.sup sp1) o< & A
284 z11 = c<→o< ( SUP.A∋maximal sp1) 286 z11 = c<→o< ( SUP.A∋maximal sp1)
285 z12 : odef chain (& (SUP.sup sp1)) 287 z12 : odef chain (& (SUP.sup sp1))
286 z12 with o≡? (& s) (& (SUP.sup sp1)) 288 z12 with o≡? (& s) (& (SUP.sup sp1))
287 ... | yes eq = subst (λ k → odef chain k) eq ( ZChain.chain∋x zc ) 289 ... | yes eq = subst (λ k → odef chain k) eq ( ZChain.chain∋x zc )
288 ... | no ne = z10 {& s} {& (SUP.sup sp1)} ( ZChain.chain∋x zc ) (SUP.A∋maximal sp1) (case2 refl ) z13 where 290 ... | no ne = z10 {& s} {& (SUP.sup sp1)} ( ZChain.chain∋x zc ) s<A (SUP.A∋maximal sp1) (case2 refl ) z13 where
289 z13 : * (& s) < * (& (SUP.sup sp1)) 291 z13 : * (& s) < * (& (SUP.sup sp1))
290 z13 with SUP.x<sup sp1 (subst (λ k → odef k (& s)) (sym *iso) ( ZChain.chain∋x zc )) 292 z13 with SUP.x<sup sp1 (subst (λ k → odef k (& s)) (sym *iso) ( ZChain.chain∋x zc ))
291 ... | case1 eq = ⊥-elim ( ne (cong (&) eq) ) 293 ... | case1 eq = ⊥-elim ( ne (cong (&) eq) )
292 ... | case2 lt = subst₂ (λ j k → j < k ) (sym *iso) (sym *iso) lt 294 ... | case2 lt = subst₂ (λ j k → j < k ) (sym *iso) (sym *iso) lt
293 z14 : f (& (SUP.sup (sp0 f mf zc))) ≡ & (SUP.sup (sp0 f mf zc)) 295 z14 : f (& (SUP.sup (sp0 f mf zc))) ≡ & (SUP.sup (sp0 f mf zc))
303 z15 = SUP.x<sup sp1 (subst₂ (λ j k → odef j k ) (sym *iso) (sym &iso) (ZChain.f-next zc z12 )) 305 z15 = SUP.x<sup sp1 (subst₂ (λ j k → odef j k ) (sym *iso) (sym &iso) (ZChain.f-next zc z12 ))
304 z17 : ⊥ 306 z17 : ⊥
305 z17 with z15 307 z17 with z15
306 ... | case1 eq = ¬b eq 308 ... | case1 eq = ¬b eq
307 ... | case2 lt = ¬a lt 309 ... | case2 lt = ¬a lt
308 z04 : (nmx : ¬ Maximal A ) → (zc : ZChain A (subst (λ k → odef A k ) &iso sa ) (cf nmx) (cf-is-≤-monotonic nmx) supO ) → ⊥ 310 -- ZChain requires the Maximal
311 z04 : (nmx : ¬ Maximal A ) → (zc : ZChain A (subst (λ k → odef A k ) &iso sa ) (cf nmx) (cf-is-≤-monotonic nmx) supO (& A)) → ⊥
309 z04 nmx zc = z01 {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) 312 z04 nmx zc = z01 {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso)
310 (proj1 (is-cf nmx (SUP.A∋maximal sp1)))) 313 (proj1 (is-cf nmx (SUP.A∋maximal sp1))))
311 (subst (λ k → odef A (& k)) (sym *iso) (SUP.A∋maximal sp1) ) (case1 ( cong (*)( z03 (cf nmx) (cf-is-≤-monotonic nmx ) zc ))) 314 (subst (λ k → odef A (& k)) (sym *iso) (SUP.A∋maximal sp1) ) (case1 ( cong (*)( z03 (cf nmx) (cf-is-≤-monotonic nmx ) zc )))
312 (proj1 (cf-is-<-monotonic nmx c (SUP.A∋maximal sp1))) where 315 (proj1 (cf-is-<-monotonic nmx c (SUP.A∋maximal sp1))) where
313 sp1 = sp0 (cf nmx) (cf-is-≤-monotonic nmx) zc 316 sp1 = sp0 (cf nmx) (cf-is-≤-monotonic nmx) zc
314 c = & (SUP.sup sp1) 317 c = & (SUP.sup sp1)
315 premax : {x y : Ordinal} → y o< x → ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : ZChain A sa f mf supO ) 318 premax : {x y : Ordinal} → y o< x → ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : ZChain A sa f mf supO y )
316 → {a b : Ordinal} (ca : odef (ZChain.chain zc0) a) → (ab : odef A b) → a o< y 319 → {a b : Ordinal} (ca : odef (ZChain.chain zc0) a) → (ab : odef A b) → a o< y
317 → Prev< A (ZChain.chain zc0) ab f ∨ (supO (& (ZChain.chain zc0)) 320 → Prev< A (ZChain.chain zc0) ab f ∨ (supO (& (ZChain.chain zc0))
318 (subst (λ k → k ⊆ A) (sym *iso) (ZChain.chain⊆A zc0)) 321 (subst (λ k → k ⊆ A) (sym *iso) (ZChain.chain⊆A zc0))
319 (subst IsTotalOrderSet (sym *iso) (ZChain.f-total zc0)) ≡ b) 322 (subst IsTotalOrderSet (sym *iso) (ZChain.f-total zc0)) ≡ b)
320 → * a < * b → odef (ZChain.chain zc0) b 323 → * a < * b → odef (ZChain.chain zc0) b
321 premax {x} {y} y<x f mf zc0 {a} {b} ca ab a<y P a<b = ZChain.is-max zc0 ca ab P a<b -- ca ab y P a<b 324 premax {x} {y} y<x f mf zc0 {a} {b} ca ab a<y P a<b = ZChain.is-max zc0 ca a<y ab P a<b -- ca ab y P a<b
322 -- Union of ZFChain 325 -- Union of ZFChain
323 UZFChain : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (B : Ordinal) 326 UZFChain : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (B : Ordinal)
324 → ( (y : Ordinal) → y o< B → (ya : odef A y) → ZChain A ya f mf supO ) → HOD 327 → ( (z : Ordinal) → z o< B → {y : Ordinal} → (ya : odef A y) → ZChain A ya f mf supO z ) → HOD
325 UZFChain f mf B prev = record { od = record { def = λ y → odef A y ∧ (y o< B) ∧ ( (y<b : y o< B) → (ya : odef A y) → odef (ZChain.chain (prev y y<b ya )) y) } 328 UZFChain f mf B prev = record { od = record { def = λ y → odef A y ∧ (y o< B) ∧ ( (y<b : y o< B) → (ya : odef A y) → odef (ZChain.chain (prev y y<b ya )) y) }
326 ; odmax = & A ; <odmax = z07 } 329 ; odmax = & A ; <odmax = z07 }
327 -- ZChain is not compatible with the SUP condition 330 -- create all ZChains under o< x
328 ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (x : Ordinal) → 331 ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (x : Ordinal) →
329 ((y : Ordinal) → y o< x → (ya : odef A y) → ZChain A ya f mf supO) → (ya : odef A x) → ZChain A ya f mf supO 332 ((z : Ordinal) → z o< x → {y : Ordinal} → (ya : odef A y) → ZChain A ya f mf supO z ) → { y : Ordinal } → (ya : odef A y) → ZChain A ya f mf supO x
330 ind f mf x prev ax with Oprev-p x 333 ind f mf x prev {y} ay with Oprev-p x
331 ... | yes op with ODC.∋-p O A (* (Oprev.oprev op)) 334 ... | yes op with ODC.∋-p O A (* (Oprev.oprev op))
332 ... | yes apx = zc4 where -- we have previous ordinal and A ∋ op 335 ... | yes apx = zc4 where -- we have previous ordinal and A ∋ op
333 px = Oprev.oprev op 336 px = Oprev.oprev op
334 apx0 = subst (λ k → odef A k ) &iso apx 337 apx0 = subst (λ k → odef A k ) &iso apx
335 zc0 : ZChain A apx0 f mf supO 338 zc0 : ZChain A ay f mf supO (Oprev.oprev op)
336 zc0 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) apx0 339 zc0 = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) ay
337 ax0 : odef A (& (* x)) 340 zc1 : {y : Ordinal } → (ay : odef A y ) → ZChain A ay f mf supO (Oprev.oprev op)
338 ax0 = {!!} 341 zc1 {y} ay = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) ay
342 ay0 : odef A (& (* y))
343 ay0 = (subst (λ k → odef A k ) (sym &iso) ay )
339 Afx : { x : Ordinal } → A ∋ * x → A ∋ * (f x) 344 Afx : { x : Ordinal } → A ∋ * x → A ∋ * (f x)
340 Afx {x} ax = (subst (λ k → odef A k ) (sym &iso) (proj2 (mf x (subst (λ k → odef A k ) &iso ax)))) 345 Afx {x} ax = (subst (λ k → odef A k ) (sym &iso) (proj2 (mf x (subst (λ k → odef A k ) &iso ax))))
341 -- x is in the previous chain, use the same 346 -- x is in the previous chain, use the same
342 -- x has some y which y < x ∧ f y ≡ x 347 -- x has some y which y < x ∧ f y ≡ x
343 -- x has no y which y < x 348 -- x has no y which y < x
344 zc4 : ZChain A ax f mf supO 349 zc4 : ZChain A ay f mf supO x
345 zc4 with ODC.p∨¬p O ( Prev< A (ZChain.chain zc0) ax f ) 350 zc4 with ODC.p∨¬p O ( Prev< A (ZChain.chain zc0) ay f )
346 ... | case1 y = zc7 where -- we have previous < 351 ... | case1 pr = zc7 where -- we have previous <
347 chain = ZChain.chain zc0 352 chain = ZChain.chain zc0
348 zc7 : ZChain A ax f mf supO 353 zc7 : ZChain A ay f mf supO x
349 zc7 with ODC.∋-p O (ZChain.chain zc0) (* ( f x ) ) 354 zc7 with ODC.∋-p O (ZChain.chain zc0) (* ( f x ) )
350 ... | yes y = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0 355 ... | yes pr = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = ZChain.f-next zc0
351 ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = {!!} -- ZChain.chain∋x zc0 356 ; f-immediate = ZChain.f-immediate zc0 ; chain∋x = {!!} -- ZChain.chain∋x zc0
352 ; is-max = {!!} } where -- no extention 357 ; is-max = {!!} } where -- no extention
353 z22 : {a : Ordinal} → x o< osuc a → ¬ odef (ZChain.chain zc0) a 358 z22 : {a : Ordinal} → x o< osuc a → ¬ odef (ZChain.chain zc0) a
354 z22 {a} x<oa = {!!} 359 z22 {a} x<oa = {!!}
355 zc20 : {P : Ordinal → Set n} → ({a : Ordinal} → odef (ZChain.chain zc0) a → a o< px → P a) 360 zc20 : {P : Ordinal → Set n} → ({a : Ordinal} → odef (ZChain.chain zc0) a → a o< px → P a)
365 ... | tri> ¬a ¬b c = ⊥-elim ( o<> c a<x ) 370 ... | tri> ¬a ¬b c = ⊥-elim ( o<> c a<x )
366 ... | no not = record { chain = zc5 ; chain⊆A = ⊆-zc5 371 ... | no not = record { chain = zc5 ; chain⊆A = ⊆-zc5
367 ; f-total = zc6 ; f-next = {!!} ; f-immediate = {!!} ; chain∋x = case1 {!!} ; ¬chain∋x>z = {!!} ; is-max = {!!} } where 372 ; f-total = zc6 ; f-next = {!!} ; f-immediate = {!!} ; chain∋x = case1 {!!} ; ¬chain∋x>z = {!!} ; is-max = {!!} } where
368 -- extend with f x -- cahin ∋ y ∧ chain ∋ f y ∧ x ≡ f ( f y ) 373 -- extend with f x -- cahin ∋ y ∧ chain ∋ f y ∧ x ≡ f ( f y )
369 zc5 : HOD 374 zc5 : HOD
370 zc5 = record { od = record { def = λ z → odef (ZChain.chain zc0) z ∨ (z ≡ f x) } ; odmax = & A ; <odmax = {!!} } 375 zc5 = record { od = record { def = λ z → odef (ZChain.chain zc0) z ∨ (z ≡ f y) } ; odmax = & A ; <odmax = {!!} }
371 ⊆-zc5 : zc5 ⊆ A 376 ⊆-zc5 : zc5 ⊆ A
372 ⊆-zc5 = record { incl = λ {y} lt → zc15 lt } where 377 ⊆-zc5 = record { incl = λ {y} lt → zc15 lt } where
373 zc15 : {z : Ordinal } → ( odef (ZChain.chain zc0) z ∨ (z ≡ f x) ) → odef A z 378 zc15 : {z : Ordinal } → ( odef (ZChain.chain zc0) z ∨ (z ≡ f y) ) → odef A z
374 zc15 {z} (case1 zz) = subst (λ k → odef A k ) &iso ( incl (ZChain.chain⊆A zc0) (subst (λ k → odef chain k ) (sym &iso) zz ) ) 379 zc15 {z} (case1 zz) = subst (λ k → odef A k ) &iso ( incl (ZChain.chain⊆A zc0) (subst (λ k → odef chain k ) (sym &iso) zz ) )
375 zc15 (case2 refl) = proj2 ( mf x (subst (λ k → odef A k ) &iso {!!} ) ) 380 zc15 (case2 refl) = proj2 ( mf y (subst (λ k → odef A k ) &iso {!!} ) )
376 IPO = ⊆-IsPartialOrderSet ⊆-zc5 PO 381 IPO = ⊆-IsPartialOrderSet ⊆-zc5 PO
377 zc8 : { A B x : HOD } → (ax : A ∋ x ) → (P : Prev< A B ax f ) → * (f (& (* (Prev<.y P)))) ≡ x 382 zc8 : { A B x : HOD } → (ax : A ∋ x ) → (P : Prev< A B ax f ) → * (f (& (* (Prev<.y P)))) ≡ x
378 zc8 {A} {B} {x} ax P = subst₂ (λ j k → * ( f j ) ≡ k ) (sym &iso) *iso (sym (cong (*) ( Prev<.x=fy P))) 383 zc8 {A} {B} {x} ax P = subst₂ (λ j k → * ( f j ) ≡ k ) (sym &iso) *iso (sym (cong (*) ( Prev<.x=fy P)))
379 fx=zc : odef (ZChain.chain zc0) x → Tri (* (f x) < * x ) (* (f x) ≡ * x) (* x < * (f x) ) 384 fx=zc : odef (ZChain.chain zc0) y → Tri (* (f y) < * y ) (* (f y) ≡ * y) (* y < * (f y) )
380 fx=zc c with mf x (subst (λ k → odef A k) &iso ax0 ) 385 fx=zc c with mf y (subst (λ k → odef A k) &iso ay0 )
381 ... | ⟪ case1 x=fx , afx ⟫ = tri≈ ( z01 ax0 (Afx ax0) (case1 (sym zc13))) zc13 (z01 (Afx ax0) ax0 (case1 zc13)) where 386 ... | ⟪ case1 x=fx , afx ⟫ = tri≈ ( z01 ay0 (Afx ay0) (case1 (sym zc13))) zc13 (z01 (Afx ay0) ay0 (case1 zc13)) where
382 zc13 : * (f x) ≡ * x 387 zc13 : * (f y) ≡ * y
383 zc13 = subst (λ k → k ≡ * x ) (subst (λ k → * (f x) ≡ k ) *iso (cong (*) (sym &iso))) (sym ( x=fx )) 388 zc13 = subst (λ k → k ≡ * y ) (subst (λ k → * (f y) ≡ k ) *iso (cong (*) (sym &iso))) (sym ( x=fx ))
384 ... | ⟪ case2 x<fx , afx ⟫ = tri> (z01 ax0 (Afx ax0) (case2 zc14)) (λ lt → z01 (Afx ax0) ax0 (case1 lt) zc14) zc14 where 389 ... | ⟪ case2 x<fx , afx ⟫ = tri> (z01 ay0 (Afx ay0) (case2 zc14)) (λ lt → z01 (Afx ay0) ay0 (case1 lt) zc14) zc14 where
385 zc14 : * x < * (f x) 390 zc14 : * y < * (f y)
386 zc14 = subst (λ k → * x < k ) (subst (λ k → * (f x) ≡ k ) *iso (cong (*) (sym &iso ))) x<fx 391 zc14 = subst (λ k → * y < k ) (subst (λ k → * (f y) ≡ k ) *iso (cong (*) (sym &iso ))) x<fx
387 cmp : Trichotomous _ _ 392 cmp : Trichotomous _ _
388 cmp record { elm = a ; is-elm = aa } record { elm = b ; is-elm = ab } with aa | ab 393 cmp record { elm = a ; is-elm = aa } record { elm = b ; is-elm = ab } with aa | ab
389 ... | case1 x | case1 x₁ = IsStrictTotalOrder.compare (ZChain.f-total zc0) (me x) (me x₁) 394 ... | case1 x | case1 x₁ = IsStrictTotalOrder.compare (ZChain.f-total zc0) (me x) (me x₁)
390 ... | case2 fx | case2 fx₁ = tri≈ {!!} (subst₂ (λ j k → j ≡ k ) *iso *iso (trans (cong (*) fx) (sym (cong (*) fx₁ ) ))) {!!} 395 ... | case2 fx | case2 fx₁ = tri≈ {!!} (subst₂ (λ j k → j ≡ k ) *iso *iso (trans (cong (*) fx) (sym (cong (*) fx₁ ) ))) {!!}
391 ... | case1 c | case2 fx = {!!} -- subst₂ (λ j k → Tri ( j < k ) (j ≡ k) ( k < j ) ) {!!} {!!} ( fx>zc (subst (λ k → odef chain k) {!!} c )) 396 ... | case1 c | case2 fx = {!!} -- subst₂ (λ j k → Tri ( j < k ) (j ≡ k) ( k < j ) ) {!!} {!!} ( fx>zc (subst (λ k → odef chain k) {!!} c ))
392 ... | case2 fx | case1 c with ODC.p∨¬p O ( Prev< A chain (incl (ZChain.chain⊆A zc0) c) f ) 397 ... | case2 fx | case1 c with ODC.p∨¬p O ( Prev< A chain (incl (ZChain.chain⊆A zc0) c) f )
393 ... | case2 n = {!!} 398 ... | case2 n = {!!}
394 ... | case1 fb with IsStrictTotalOrder.compare (ZChain.f-total zc0) (me (subst (λ k → odef chain k) (sym &iso) (Prev<.ay y))) (me (subst (λ k → odef chain k) (sym &iso) (Prev<.ay fb))) 399 ... | case1 fb with IsStrictTotalOrder.compare (ZChain.f-total zc0) (me (subst (λ k → odef chain k) (sym &iso) (Prev<.ay pr))) (me (subst (λ k → odef chain k) (sym &iso) (Prev<.ay fb)))
395 ... | tri< a₁ ¬b ¬c = {!!} 400 ... | tri< a₁ ¬b ¬c = {!!}
396 ... | tri≈ ¬a b₁ ¬c = subst₂ (λ j k → Tri ( j < k ) (j ≡ k) ( k < j ) ) zc11 zc10 ( fx=zc zc12 ) where 401 ... | tri≈ ¬a b₁ ¬c = subst₂ (λ j k → Tri ( j < k ) (j ≡ k) ( k < j ) ) zc11 zc10 ( fx=zc zc12 ) where
397 zc10 : * x ≡ b 402 zc10 : * y ≡ b
398 zc10 = subst₂ (λ j k → j ≡ k ) (zc8 ax {!!} ) (zc8 (incl ( ZChain.chain⊆A zc0 ) c) fb) (cong (λ k → * ( f ( & k ))) b₁) 403 zc10 = subst₂ (λ j k → j ≡ k ) (zc8 ay {!!} ) (zc8 (incl ( ZChain.chain⊆A zc0 ) c) fb) (cong (λ k → * ( f ( & k ))) b₁)
399 zc11 : * (f x) ≡ a 404 zc11 : * (f y) ≡ a
400 zc11 = subst (λ k → * (f x) ≡ k ) *iso (cong (*) (sym fx)) 405 zc11 = subst (λ k → * (f y) ≡ k ) *iso (cong (*) (sym fx))
401 zc12 : odef chain x 406 zc12 : odef chain y
402 zc12 = subst (λ k → odef chain k ) (subst (λ k → & b ≡ k ) &iso (sym (cong (&) zc10))) c 407 zc12 = subst (λ k → odef chain k ) (subst (λ k → & b ≡ k ) &iso (sym (cong (&) zc10))) c
403 ... | tri> ¬a ¬b c₁ = {!!} 408 ... | tri> ¬a ¬b c₁ = {!!}
404 zc6 : IsTotalOrderSet zc5 409 zc6 : IsTotalOrderSet zc5
405 zc6 = record { isEquivalence = IsStrictPartialOrder.isEquivalence IPO ; trans = λ {x} {y} {z} → IsStrictPartialOrder.trans IPO {x} {y} {z} 410 zc6 = record { isEquivalence = IsStrictPartialOrder.isEquivalence IPO ; trans = λ {x} {y} {z} → IsStrictPartialOrder.trans IPO {x} {y} {z}
406 ; compare = cmp } 411 ; compare = cmp }
407 ... | case2 not with ODC.p∨¬p O ( x ≡ & ( SUP.sup ( supP ( ZChain.chain zc0 ) {!!} {!!} ) )) 412 ... | case2 not with ODC.p∨¬p O ( x ≡ & ( SUP.sup ( supP ( ZChain.chain zc0 ) {!!} {!!} ) ))
408 ... | case1 y = {!!} -- x is sup 413 ... | case1 pr = {!!} -- x is sup
409 ... | case2 not = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = {!!} 414 ... | case2 not = record { chain = ZChain.chain zc0 ; chain⊆A = ZChain.chain⊆A zc0 ; f-total = ZChain.f-total zc0 ; f-next = {!!}
410 ; f-immediate = {!!} ; chain∋x = {!!} ; is-max = {!!} } -- no extention 415 ; f-immediate = {!!} ; chain∋x = {!!} ; is-max = {!!} } -- no extention
411 ... | no noapx = {!!} -- we have previous ordinal but ¬ A ∋ op 416 ... | no noapx = {!!} -- we have previous ordinal but ¬ A ∋ op
412 ind f mf x prev ya | no ¬ox with trio< (& A) x --- limit ordinal case 417 ind f mf x prev ya | no ¬ox with trio< (& A) x --- limit ordinal case
413 ... | tri< a ¬b ¬c = {!!} where 418 ... | tri< a ¬b ¬c = {!!} where
430 -- if we have no maximal, make ZChain, which contradict SUP condition 435 -- if we have no maximal, make ZChain, which contradict SUP condition
431 nmx : ¬ Maximal A 436 nmx : ¬ Maximal A
432 nmx mx = ∅< {HasMaximal} zc5 ( ≡o∅→=od∅ ¬Maximal ) where 437 nmx mx = ∅< {HasMaximal} zc5 ( ≡o∅→=od∅ ¬Maximal ) where
433 zc5 : odef A (& (Maximal.maximal mx)) ∧ (( y : Ordinal ) → odef A y → ¬ (* (& (Maximal.maximal mx)) < * y)) 438 zc5 : odef A (& (Maximal.maximal mx)) ∧ (( y : Ordinal ) → odef A y → ¬ (* (& (Maximal.maximal mx)) < * y))
434 zc5 = ⟪ Maximal.A∋maximal mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫ 439 zc5 = ⟪ Maximal.A∋maximal mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫
435 zorn03 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (ya : odef A (& s)) → ZChain A ya f mf supO 440 zorn03 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → (ya : odef A (& s)) → ZChain A ya f mf supO (& A)
436 zorn03 f mf = TransFinite {λ y → (ya : odef A y ) → ZChain A ya f mf supO } (ind f mf) (& s ) 441 zorn03 f mf = TransFinite {λ z → {y : Ordinal } → (ya : odef A y ) → ZChain A ya f mf supO z } (ind f mf) (& A)
437 zorn04 : ZChain A (subst (λ k → odef A k ) &iso sa ) (cf nmx) (cf-is-≤-monotonic nmx) supO 442 zorn04 : ZChain A (subst (λ k → odef A k ) &iso sa ) (cf nmx) (cf-is-≤-monotonic nmx) supO (& A)
438 zorn04 = zorn03 (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso sa ) 443 zorn04 = zorn03 (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso sa )
439 444
440 -- usage (see filter.agda ) 445 -- usage (see filter.agda )
441 -- 446 --
442 -- _⊆'_ : ( A B : HOD ) → Set n 447 -- _⊆'_ : ( A B : HOD ) → Set n