comparison src/zorn.agda @ 833:3fa321cbc337

... dead end
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 23 Aug 2022 10:33:47 +0900
parents e61cbf28ec31
children 6bf0899a6150
comparison
equal deleted inserted replaced
832:e61cbf28ec31 833:3fa321cbc337
647 ysup f mf {y} ay = supP (uchain f mf ay) (λ lt → A∋fc y f mf lt) (utotal f mf ay) 647 ysup f mf {y} ay = supP (uchain f mf ay) (λ lt → A∋fc y f mf lt) (utotal f mf ay)
648 648
649 SUP⊆ : { B C : HOD } → B ⊆' C → SUP A C → SUP A B 649 SUP⊆ : { B C : HOD } → B ⊆' C → SUP A C → SUP A B
650 SUP⊆ {B} {C} B⊆C sup = record { sup = SUP.sup sup ; as = SUP.as sup ; x<sup = λ lt → SUP.x<sup sup (B⊆C lt) } 650 SUP⊆ {B} {C} B⊆C sup = record { sup = SUP.sup sup ; as = SUP.as sup ; x<sup = λ lt → SUP.x<sup sup (B⊆C lt) }
651 651
652 record xSUP (B : HOD) (x : Ordinal) : Set n where
653 field
654 ax : odef A x
655 is-sup : IsSup A B ax
656
652 -- 657 --
653 -- create all ZChains under o< x 658 -- create all ZChains under o< x
654 -- 659 --
655 660
656 ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) 661 ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal)
688 pcy : odef pchain y 693 pcy : odef pchain y
689 pcy = ⟪ ay , ch-init (init ay refl) ⟫ 694 pcy = ⟪ ay , ch-init (init ay refl) ⟫
690 695
691 supf0 = ZChain.supf zc 696 supf0 = ZChain.supf zc
692 697
693 sup1 : SUP A (UnionCF A f mf ay supf0 px)
694 sup1 = supP pchain pchain⊆A ptotal
695 sp1 = & (SUP.sup sup1 )
696 supf1 : Ordinal → Ordinal
697 supf1 z with trio< z px
698 ... | tri< a ¬b ¬c = ZChain.supf zc z
699 ... | tri≈ ¬a b ¬c = sp1
700 ... | tri> ¬a ¬b c = sp1
701
702 pchain1 : HOD
703 pchain1 = UnionCF A f mf ay supf1 x
704 pcy1 : odef pchain1 y
705 pcy1 = ⟪ ay , ch-init (init ay refl) ⟫
706 pinit1 : {y₁ : Ordinal} → odef pchain1 y₁ → * y ≤ * y₁
707 pinit1 {a} ⟪ aa , ua ⟫ with ua
708 ... | ch-init fc = s≤fc y f mf fc
709 ... | ch-is-sup u u≤x is-sup fc = ≤-ftrans (<=to≤ zc7) (s≤fc _ f mf fc) where
710 zc7 : y <= supf1 u
711 zc7 = ChainP.fcy<sup is-sup (init ay refl)
712 pnext1 : {a : Ordinal} → odef pchain1 a → odef pchain1 (f a)
713 pnext1 {a} ⟪ aa , ch-init fc ⟫ = ⟪ proj2 (mf a aa) , ch-init (fsuc _ fc) ⟫
714 pnext1 {a} ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 (mf a aa) , ch-is-sup u u≤x is-sup (fsuc _ fc ) ⟫
715 ptotal1 : IsTotalOrderSet pchain1
716 ptotal1 {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where
717 uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) )
718 uz01 = chain-total A f mf ay supf1 ( (proj2 ca)) ( (proj2 cb))
719
720 zc64 : {z : Ordinal } → supf0 z o< supf0 px → odef (UnionCF A f mf ay supf0 px) (supf0 z)
721 zc64 {z} sz<spx = zc73 where
722 z<px = ZChain.supf-inject zc sz<spx
723 zc70 : odef (UnionCF A f mf ay supf0 (supf0 z) ) (supf0 z)
724 zc70 = ZChain.csupf zc (o<→≤ z<px )
725 zc73 : odef (UnionCF A f mf ay supf0 px ) (supf0 z)
726 zc73 with osuc-≡< (ZChain.supf-mono zc (o<→≤ z<px))
727 ... | case1 eq2 = ⊥-elim ( o<¬≡ eq2 sz<spx )
728 ... | case2 lt = subst (λ k → odef (UnionCF A f mf ay supf0 px ) k ) &iso ( ZChain.csupf-fc zc o≤-refl lt (init (proj1 zc70) refl) )
729
730 supf1<sp1 : {z : Ordinal } → supf1 z o≤ sp1
731 supf1<sp1 {z} = ? where
732 zc50 : supf0 px ≡ sp1
733 zc50 = ? -- ZChain.sup=u zc ? ? ?
734 zc53 : SUP A ( UnionCF A f mf ay supf0 px )
735 zc53 = ZChain.sup zc o≤-refl
736 zc52 : supf0 px ≡ ?
737 zc52 = ? -- ZChain.sup=u zc ? ? ?
738 zc51 : supf0 sp1 ≡ sp1
739 zc51 = ZChain.sup=u zc ? ? ?
740
741 -- if previous chain satisfies maximality, we caan reuse it 698 -- if previous chain satisfies maximality, we caan reuse it
742 -- 699 --
743 -- supf0 px is sup of UnionCF px , supf0 x is sup of UnionCF x 700 -- supf0 px is sup of UnionCF px , supf0 x is sup of UnionCF x
744 701
745 record xSUP : Set n where 702 no-extension : (¬ xSUP (UnionCF A f mf ay supf0 px) x ) ∨ HasPrev A pchain ? f → ZChain A f mf ay x
746 field 703 no-extension ¬sp=x = record { supf = supf0 ; sup = ? ; supf-mono = {!!}
747 ax : odef A x 704 ; initial = ? ; chain∋init = ? ; sup=u = ? ; supf-is-sup = ? ; csupf = {!!}
748 is-sup : IsSup A (UnionCF A f mf ay supf0 px) ax 705 ; chain⊆A = λ lt → proj1 lt ; f-next = ? ; f-total = ? } where
749 706 pchain0=1 : ?
750 UnionCF⊆ : {z0 z1 : Ordinal} → (z0≤1 : z0 o≤ z1 ) → (z0≤px : z0 o< px ) → UnionCF A f mf ay supf0 z0 ⊆' UnionCF A f mf ay supf1 z1 707 pchain0=1 = ?
751 UnionCF⊆ {z0} {z1} z0≤1 z0<px ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ 708 sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf0 z)
752 UnionCF⊆ {z0} {z1} z0≤1 z0<px ⟪ au , ch-is-sup u1 {w} u1≤x u1-is-sup fc ⟫ = zc60 fc where
753 zc60 : {w : Ordinal } → FClosure A f (supf0 u1) w → odef (UnionCF A f mf ay supf1 z1 ) w
754 zc60 (init asp refl) with trio< u1 px | inspect supf1 u1
755 ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x z0≤1 )
756 record { fcy<sup = fcy<sup ; order = order ; supu=u = trans eq1 (ChainP.supu=u u1-is-sup) } (init (subst (λ k → odef A k ) (sym eq1) asp) eq1 ) ⟫ where
757 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 u1) ∨ (z << supf1 u1 )
758 fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (sym eq1) ( ChainP.fcy<sup u1-is-sup fc )
759 order : {s : Ordinal} {z2 : Ordinal} → supf1 s o< supf1 u1 → FClosure A f (supf1 s) z2 →
760 (z2 ≡ supf1 u1) ∨ (z2 << supf1 u1)
761 order {s} {z2} s<u1 fc with trio< s px
762 ... | tri< a ¬b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) ( ChainP.order u1-is-sup zc61 fc ) where
763 zc61 : supf0 s o< supf0 u1
764 zc61 = subst (λ k → supf0 s o< k ) eq1 s<u1
765 ... | tri≈ ¬a b ¬c = ⊥-elim ( o≤> supf1<sp1 s<u1 )
766 ... | tri> ¬a ¬b px<s = ⊥-elim ( o<¬≡ refl (ordtrans px<s {!!} )) -- px o< s < u1 < px
767 ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x z0≤1 )
768 record { fcy<sup = fcy<sup ; order = order ; supu=u = trans eq1 {!!} } (init (subst (λ k → odef A k ) (sym eq1) {!!} ) {!!} ) ⟫ where
769 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 u1) ∨ (z << supf1 u1 )
770 fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (sym eq1) {!!} -- ( ChainP.fcy<sup u1-is-sup fc )
771 order : {s : Ordinal} {z2 : Ordinal} → supf1 s o< supf1 u1 → FClosure A f (supf1 s) z2 →
772 (z2 ≡ supf1 u1) ∨ (z2 << supf1 u1)
773 order {s} {z2} s<u1 fc with trio< s px
774 ... | tri< a ¬b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) {!!}
775 ... | tri≈ ¬a b ¬c = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym eq1) {!!} -- ( ChainP.order u1-is-sup s<u1 fc )
776 ... | tri> ¬a ¬b px<s = ⊥-elim ( o<¬≡ refl (ordtrans px<s (subst (λ k → s o< k) b {!!} ) )) -- px o< s < u1 = px
777 ... | tri> ¬a ¬b px<u1 | record { eq = eq1 } with osuc-≡< (OrdTrans u1≤x (o<→≤ z0<px))
778 ... | case1 eq = ⊥-elim ( o<¬≡ (sym eq) px<u1 )
779 ... | case2 lt = ⊥-elim ( o<> lt px<u1 )
780 zc60 (fsuc w1 fc) with zc60 fc
781 ... | ⟪ ua1 , ch-init fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-init (fsuc _ fc₁) ⟫
782 ... | ⟪ ua1 , ch-is-sup u u≤x is-sup fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-is-sup u u≤x is-sup (fsuc _ fc₁) ⟫
783 no-extension : ¬ xSUP → ZChain A f mf ay x
784 no-extension ¬sp=x = record { supf = supf1 ; sup = sup ; supf-mono = {!!}
785 ; initial = pinit1 ; chain∋init = pcy1 ; sup=u = sup=u ; supf-is-sup = sis ; csupf = {!!}
786 ; chain⊆A = λ lt → proj1 lt ; f-next = pnext1 ; f-total = ptotal1 } where
787 UnionCFR⊆ : {z0 z1 : Ordinal} → z0 o≤ z1 → z0 o< x → UnionCF A f mf ay supf1 z0 ⊆' UnionCF A f mf ay supf0 z1
788 UnionCFR⊆ {z0} {z1} z0≤1 z0<x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫
789 UnionCFR⊆ {z0} {z1} z0≤1 z0<x ⟪ au , ch-is-sup u1 {w} u1≤x u1-is-sup fc ⟫ = zc60 fc where
790 zc60 : {w : Ordinal } → FClosure A f (supf1 u1) w → odef (UnionCF A f mf ay supf0 z1 ) w
791 zc60 {w} (init asp refl) with trio< u1 px | inspect supf1 u1
792 ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x z0≤1 )
793 record { fcy<sup = fcy<sup ; order = {!!} ; supu=u = trans (sym eq1) (ChainP.supu=u u1-is-sup) } (init asp refl ) ⟫ where
794 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf0 u1) ∨ (z << supf0 u1 )
795 fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) eq1 ( ChainP.fcy<sup u1-is-sup fc )
796 order : {s : Ordinal} {z2 : Ordinal} → s o< u1 → FClosure A f (supf0 s) z2 →
797 (z2 ≡ supf0 u1) ∨ (z2 << supf0 u1)
798 order {s} {z2} s<u1 fc with trio< s px | inspect supf1 s
799 ... | tri< a ¬b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) eq1 ( ChainP.order u1-is-sup {!!} (subst (λ k → FClosure A f k z2) (sym eq2) fc ))
800 ... | tri≈ ¬a b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) eq1 ( ChainP.order u1-is-sup {!!} (subst (λ k → FClosure A f k z2) (sym eq2) {!!} ))
801 ... | tri> ¬a ¬b px<s | record { eq = eq2 } = ⊥-elim ( o<¬≡ refl (ordtrans px<s (ordtrans s<u1 a) )) -- px o< s < u1 < px
802 ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x z0≤1 )
803 record { fcy<sup = fcy<sup ; order = {!!} ; supu=u = trans (sym {!!} ) (ChainP.supu=u u1-is-sup) } (init {!!} {!!} ) ⟫ where
804 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf0 u1) ∨ (z << supf0 u1 )
805 fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) {!!} ( ChainP.fcy<sup u1-is-sup fc )
806 order : {s : Ordinal} {z2 : Ordinal} → s o< u1 → FClosure A f (supf0 s) z2 →
807 (z2 ≡ supf0 u1) ∨ (z2 << supf0 u1)
808 order {s} {z2} s<u1 fc with trio< s px | inspect supf1 s
809 ... | tri< a ¬b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) {!!}( ChainP.order u1-is-sup {!!} (subst (λ k → FClosure A f k z2) (sym eq2) fc ))
810 ... | tri≈ ¬a b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) {!!} ( ChainP.order u1-is-sup {!!} (subst (λ k → FClosure A f k z2) (sym eq2) {!!} ))
811 ... | tri> ¬a ¬b px<s | _ = ⊥-elim ( o<¬≡ refl (ordtrans px<s (subst (λ k → s o< k) b s<u1 ) )) -- px o< s < u1 = px
812 ... | tri> ¬a ¬b px<u1 | record { eq = eq1 } with trio< z0 px
813 ... | tri< a ¬b ¬c with osuc-≡< (OrdTrans u1≤x (o<→≤ a) )
814 ... | case1 eq = ⊥-elim ( o<¬≡ (sym eq) px<u1 )
815 ... | case2 lt = ⊥-elim ( o<> lt px<u1 )
816 zc60 (init asp refl) | tri> ¬a ¬b px<u1 | record { eq = eq1} | tri≈ ¬a' b ¬c with osuc-≡< (OrdTrans u1≤x (o≤-refl0 b) )
817 ... | case1 eq = ⊥-elim ( o<¬≡ (sym eq) px<u1 )
818 ... | case2 lt = ⊥-elim ( o<> lt px<u1 )
819 zc60 (init asp refl) | tri> ¬a ¬b px<u1 | record { eq = eq1} | tri> ¬a' ¬b' px<z0 = ⊥-elim (¬p<x<op ⟪ px<z0 , subst (λ k → z0 o< k ) (sym (Oprev.oprev=x op)) z0<x ⟫ )
820 zc60 (fsuc w1 fc) with zc60 fc
821 ... | ⟪ ua1 , ch-init fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-init (fsuc _ fc₁) ⟫
822 ... | ⟪ ua1 , ch-is-sup u u≤x is-sup fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-is-sup u u≤x is-sup (fsuc _ fc₁) ⟫
823 sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf1 z)
824 sup {z} z≤x with trio< z px 709 sup {z} z≤x with trio< z px
825 ... | tri< a ¬b ¬c = SUP⊆ (UnionCFR⊆ o≤-refl ? ) ( ZChain.sup zc (o<→≤ a) ) 710 ... | tri< a ¬b ¬c = SUP⊆ ? ( ZChain.sup zc (o<→≤ a) )
826 ... | tri≈ ¬a b ¬c = record { sup = SUP.sup sup1 ; as = SUP.as sup1 ; x<sup = zc61 } where 711 ... | tri≈ ¬a b ¬c = record { sup = SUP.sup ? ; as = SUP.as ? ; x<sup = ? } where
827 zc61 : {w : HOD} → UnionCF A f mf ay supf1 z ∋ w → (w ≡ SUP.sup sup1) ∨ (w < SUP.sup sup1) 712 zc61 : {w : HOD} → UnionCF A f mf ay supf0 z ∋ w → (w ≡ SUP.sup ?) ∨ (w < SUP.sup ? )
828 zc61 {w} lt = ? -- SUP.x<sup sup1 (UnionCFR⊆ (o<→≤ z<x) z<x lt ) 713 zc61 {w} lt = ? -- SUP.x<sup sup1 (UnionCFR⊆ (o<→≤ z<x) z<x lt )
829 ... | tri> ¬a ¬b px<z = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) ? ⟫ ) 714 ... | tri> ¬a ¬b px<z = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) ? ⟫ )
830 sup=u : {b : Ordinal} (ab : odef A b) → 715 sup=u : {b : Ordinal} (ab : odef A b) →
831 b o≤ x → IsSup A (UnionCF A f mf ay supf1 b) ab → supf1 b ≡ b 716 b o≤ x → IsSup A (UnionCF A f mf ay supf0 b) ab → supf0 b ≡ b
832 sup=u {b} ab b≤x is-sup with trio< b px 717 sup=u {b} ab b≤x is-sup with trio< b px
833 ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) record { x<sup = λ lt → IsSup.x<sup is-sup (UnionCF⊆ o≤-refl a lt) } 718 ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) record { x<sup = λ lt → IsSup.x<sup is-sup ? }
834 ... | tri≈ ¬a b ¬c = {!!} -- ZChain.sup=u zc ab (o≤-refl0 b) record { x<sup = λ lt → IsSup.x<sup is-sup (UnionCF⊆ o≤-refl (o≤-refl0 b) lt) } 719 ... | tri≈ ¬a b ¬c = {!!} -- ZChain.sup=u zc ab (o≤-refl0 b) record { x<sup = λ lt → IsSup.x<sup is-sup (UnionCF⊆ o≤-refl (o≤-refl0 b) lt) }
835 ... | tri> ¬a ¬b px<b = ⊥-elim (¬sp=x zcsup ) where 720 ... | tri> ¬a ¬b px<b = ? where -- ⊥-elim (¬sp=x zcsup ) where
836 zc30 : x ≡ b 721 zc30 : x ≡ b
837 zc30 with osuc-≡< b≤x 722 zc30 with osuc-≡< b≤x
838 ... | case1 eq = sym (eq) 723 ... | case1 eq = sym (eq)
839 ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) 724 ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ )
840 zcsup : xSUP 725 zcsup : ?
841 zcsup with zc30 726 zcsup = ? -- with zc30
842 ... | refl = record { ax = ab ; is-sup = record { x<sup = λ lt → IsSup.x<sup is-sup (UnionCF⊆ (pxo≤x op) {!!} lt) } } 727 -- ... | refl = case1 record { ax = ab ; is-sup = record { x<sup = λ lt → IsSup.x<sup is-sup ? } }
843 csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf1 b) (supf1 b) 728 csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf0 b) (supf0 b)
844 csupf {b} b<x with trio< b px | inspect supf1 b 729 csupf {b} b<x with trio< b px | inspect supf0 b
845 ... | tri< a ¬b ¬c | _ = UnionCF⊆ o≤-refl a {!!} 730 ... | tri< a ¬b ¬c | _ = ? -- UnionCF⊆ o≤-refl a {!!}
846 ... | tri≈ ¬a refl ¬c | _ = {!!} -- UnionCF⊆ o≤-refl o≤-refl ( ZChain.csupf zc o≤-refl ) 731 ... | tri≈ ¬a refl ¬c | _ = {!!} -- UnionCF⊆ o≤-refl o≤-refl ( ZChain.csupf zc o≤-refl )
847 ... | tri> ¬a ¬b px<b | record { eq = eq1 } = {!!} -- UnionCF⊆ (o<→≤ px<b) o≤-refl ( ZChain.csupf zc o≤-refl ) 732 ... | tri> ¬a ¬b px<b | record { eq = eq1 } = {!!} -- UnionCF⊆ (o<→≤ px<b) o≤-refl ( ZChain.csupf zc o≤-refl )
848 sis : {z : Ordinal} (z≤x : z o≤ x) → supf1 z ≡ & (SUP.sup (sup z≤x)) 733 sis : {z : Ordinal} (z≤x : z o≤ x) → supf0 z ≡ & (SUP.sup (sup z≤x))
849 sis {z} z<x with trio< z px 734 sis {z} z<x with trio< z px
850 ... | tri< a ¬b ¬c = ZChain.supf-is-sup zc (o<→≤ a ) 735 ... | tri< a ¬b ¬c = ZChain.supf-is-sup zc (o<→≤ a )
851 ... | tri≈ ¬a b ¬c = {!!} 736 ... | tri≈ ¬a b ¬c = {!!}
852 ... | tri> ¬a ¬b px<z = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) ? ⟫ ) 737 ... | tri> ¬a ¬b px<z = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) ? ⟫ )
738
853 zc4 : ZChain A f mf ay x 739 zc4 : ZChain A f mf ay x
854 zc4 with ODC.∋-p O A (* x) 740 zc4 with ODC.∋-p O A (* x)
855 ... | no noax = no-extension {!!} -- ¬ A ∋ p, just skip 741 ... | no noax = no-extension {!!} -- ¬ A ∋ p, just skip
856 ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain.chain zc ) ax f ) 742 ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain.chain zc ) ax f )
857 -- we have to check adding x preserve is-max ZChain A y f mf x 743 -- we have to check adding x preserve is-max ZChain A y f mf x
885 771
886 ... | no lim = zc5 where 772 ... | no lim = zc5 where
887 773
888 pzc : (z : Ordinal) → z o< x → ZChain A f mf ay z 774 pzc : (z : Ordinal) → z o< x → ZChain A f mf ay z
889 pzc z z<x = prev z z<x 775 pzc z z<x = prev z z<x
890 ysp = & (SUP.sup (ysup f mf ay)) 776
891 777 record Usupf : Set n where
892 record SupE ( z : Ordinal ) : Set n where
893 field 778 field
894 z<x : z o< x 779 umax : Ordinal → Ordinal
895 z=supfz : z ≡ ZChain.supf (pzc z z<x) z 780 umax<x : {z : Ordinal } → umax z o< x
896 781 supf : Ordinal → Ordinal
897 psupf0 : (z : Ordinal) → Ordinal 782 supf z = ZChain.supf (pzc (osuc (umax z)) (ob<x lim umax<x )) z
898 psupf0 z with trio< z x 783 field
899 ... | tri< a ¬b ¬c = ZChain.supf (pzc (osuc z) (ob<x lim a)) z 784 supf-mono : {x y : Ordinal } → x o≤ y → supf x o≤ supf y
900 ... | tri≈ ¬a b ¬c = ysp
901 ... | tri> ¬a ¬b c = ysp
902
903 pchain0 : HOD
904 pchain0 = UnionCF A f mf ay psupf0 x
905
906 ptotal0 : IsTotalOrderSet pchain0
907 ptotal0 {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where
908 uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) )
909 uz01 = chain-total A f mf ay psupf0 ( (proj2 ca)) ( (proj2 cb))
910
911 usup : SUP A pchain0
912 usup = supP pchain0 (λ lt → proj1 lt) ptotal0
913 spu = & (SUP.sup usup)
914 785
915 supf1 : Ordinal → Ordinal 786 supf1 : Ordinal → Ordinal
916 supf1 z with trio< z x 787 supf1 z = ?
917 ... | tri< a ¬b ¬c = ZChain.supf (pzc (osuc z) (ob<x lim a)) z 788 -- ... | tri< a ¬b ¬c = ZChain.supf (pzc (osuc z) (ob<x lim a)) z
918 ... | tri≈ ¬a b ¬c = spu
919 ... | tri> ¬a ¬b c = spu
920 789
921 pchain : HOD 790 pchain : HOD
922 pchain = UnionCF A f mf ay supf1 x 791 pchain = UnionCF A f mf ay supf1 x
923 792
924 pchain⊆A : {y : Ordinal} → odef pchain y → odef A y 793 pchain⊆A : {y : Ordinal} → odef pchain y → odef A y
947 ... | ⟪ ab0 , ch-init fc ⟫ = ⟪ ab , ch-init ( subst (λ k → FClosure A f y k) (sym (HasPrev.x=fy has-prev)) (fsuc _ fc )) ⟫ 816 ... | ⟪ ab0 , ch-init fc ⟫ = ⟪ ab , ch-init ( subst (λ k → FClosure A f y k) (sym (HasPrev.x=fy has-prev)) (fsuc _ fc )) ⟫
948 ... | ⟪ ab0 , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ ab , 817 ... | ⟪ ab0 , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ ab ,
949 subst (λ k → UChain A f mf ay supf x k ) 818 subst (λ k → UChain A f mf ay supf x k )
950 (sym (HasPrev.x=fy has-prev)) ( ch-is-sup u u≤x is-sup (fsuc _ fc)) ⟫ 819 (sym (HasPrev.x=fy has-prev)) ( ch-is-sup u u≤x is-sup (fsuc _ fc)) ⟫
951 820
952 record xSUP : Set n where 821 no-extension : ¬ ( xSUP (UnionCF A f mf ay supf1 x) x ) ∨ HasPrev A pchain ? f → ZChain A f mf ay x
953 field
954 ax : odef A x
955 not-sup : IsSup A (UnionCF A f mf ay psupf0 x) ax
956
957 no-extension : ¬ xSUP → ZChain A f mf ay x
958 no-extension ¬sp=x = record { initial = pinit ; chain∋init = pcy ; supf = supf1 ; sup=u = sup=u 822 no-extension ¬sp=x = record { initial = pinit ; chain∋init = pcy ; supf = supf1 ; sup=u = sup=u
959 ; sup = sup ; supf-is-sup = sis ; supf-mono = {!!} 823 ; sup = sup ; supf-is-sup = sis ; supf-mono = {!!}
960 ; csupf = {!!} ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal } where 824 ; csupf = {!!} ; chain⊆A = pchain⊆A ; f-next = pnext ; f-total = ptotal } where
961 supfu : {u : Ordinal } → ( a : u o< x ) → (z : Ordinal) → Ordinal 825 supfu : {u : Ordinal } → ( a : u o< x ) → (z : Ordinal) → Ordinal
962 supfu {u} a z = ZChain.supf (pzc (osuc u) (ob<x lim a)) z 826 supfu {u} a z = ZChain.supf (pzc (osuc u) (ob<x lim a)) z
965 UnionCF⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (init au1 refl) ⟫ = ⟪ au , ch-is-sup u1 {!!} {!!} (init {!!} {!!}) ⟫ 829 UnionCF⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (init au1 refl) ⟫ = ⟪ au , ch-is-sup u1 {!!} {!!} (init {!!} {!!}) ⟫
966 UnionCF⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (fsuc xp fcu1) ⟫ = {!!} -- with 830 UnionCF⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (fsuc xp fcu1) ⟫ = {!!} -- with
967 -- UnionCF⊆ {u} u<x ⟪ A∋fc _ f mf fcu1 , ch-is-sup u1 u1≤x u1-is-sup fcu1 ⟫ 831 -- UnionCF⊆ {u} u<x ⟪ A∋fc _ f mf fcu1 , ch-is-sup u1 u1≤x u1-is-sup fcu1 ⟫
968 -- ... | ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-init (fsuc _ fc) ⟫ 832 -- ... | ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-init (fsuc _ fc) ⟫
969 -- ... | ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-is-sup u u≤x is-sup (fsuc _ fc) ⟫ 833 -- ... | ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-is-sup u u≤x is-sup (fsuc _ fc) ⟫
970 UnionCFR⊆ : {z : Ordinal} → (a : z o≤ x ) → UnionCF A f mf ay supf1 z ⊆' UnionCF A f mf ay psupf0 x 834 UnionCFR⊆ : {z : Ordinal} → (a : z o≤ x ) → UnionCF A f mf ay supf1 z ⊆' UnionCF A f mf ay supf1 x
971 UnionCFR⊆ {u} u<x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ 835 UnionCFR⊆ {u} u<x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫
972 UnionCFR⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (init au1 refl) ⟫ = ⟪ au , ch-is-sup u1 {!!} {!!} (init {!!} {!!}) ⟫ 836 UnionCFR⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (init au1 refl) ⟫ = ⟪ au , ch-is-sup u1 {!!} {!!} (init {!!} {!!}) ⟫
973 UnionCFR⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (fsuc xp fcu1) ⟫ = {!!} -- with 837 UnionCFR⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (fsuc xp fcu1) ⟫ = {!!} -- with
974 -- UnionCF0⊆ {u} u<x ⟪ A∋fc _ f mf fcu1 , ch-is-sup u1 u1≤x u1-is-sup fcu1 ⟫ 838 -- UnionCF0⊆ {u} u<x ⟪ A∋fc _ f mf fcu1 , ch-is-sup u1 u1≤x u1-is-sup fcu1 ⟫
975 -- ... | ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-init (fsuc _ fc) ⟫ 839 -- ... | ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-init (fsuc _ fc) ⟫
985 zc8 = ZChain.supf-is-sup (pzc z a) {!!} 849 zc8 = ZChain.supf-is-sup (pzc z a) {!!}
986 ... | tri≈ ¬a b ¬c = {!!} 850 ... | tri≈ ¬a b ¬c = {!!}
987 ... | tri> ¬a ¬b c = {!!} 851 ... | tri> ¬a ¬b c = {!!}
988 sup=u : {b : Ordinal} (ab : odef A b) → b o≤ x → IsSup A (UnionCF A f mf ay supf1 b) ab → supf1 b ≡ b 852 sup=u : {b : Ordinal} (ab : odef A b) → b o≤ x → IsSup A (UnionCF A f mf ay supf1 b) ab → supf1 b ≡ b
989 sup=u {b} ab b<x is-sup with trio< b x 853 sup=u {b} ab b<x is-sup with trio< b x
990 ... | tri< a ¬b ¬c = ZChain.sup=u (pzc (osuc b) (ob<x lim a)) ab {!!} record { x<sup = {!!} } 854 ... | tri< a ¬b ¬c = ? -- ZChain.sup=u (pzc (osuc b) (ob<x lim a)) ab {!!} record { x<sup = {!!} }
991 ... | tri≈ ¬a b ¬c = {!!} -- ZChain.sup=u (pzc (osuc ?) ?) ab {!!} record { x<sup = {!!} } 855 ... | tri≈ ¬a b ¬c = {!!} -- ZChain.sup=u (pzc (osuc ?) ?) ab {!!} record { x<sup = {!!} }
992 ... | tri> ¬a ¬b c = {!!} 856 ... | tri> ¬a ¬b c = {!!}
993 csupf : {z : Ordinal} → z o≤ x → odef (UnionCF A f mf ay supf1 z) (supf1 z) 857 csupf : {z : Ordinal} → z o≤ x → odef (UnionCF A f mf ay supf1 z) (supf1 z)
994 csupf {z} z≤x with trio< z x 858 csupf {z} z≤x with trio< z x
995 ... | tri< a ¬b ¬c = zc9 where 859 ... | tri< a ¬b ¬c = ? where
996 zc9 : odef (UnionCF A f mf ay supf1 z) (ZChain.supf (pzc (osuc z) (ob<x lim a)) z) 860 zc9 : odef (UnionCF A f mf ay supf1 z) (ZChain.supf (pzc (osuc z) (ob<x lim a)) z)
997 zc9 = {!!} 861 zc9 = {!!}
998 zc8 : odef (UnionCF A f mf ay (supfu a) z) (ZChain.supf (pzc (osuc z) (ob<x lim a)) z) 862 zc8 : odef (UnionCF A f mf ay (supfu a) z) (ZChain.supf (pzc (osuc z) (ob<x lim a)) z)
999 zc8 = {!!} -- ZChain.csupf (pzc (osuc z) (ob<x lim a)) ? -- (o<→≤ <-osuc ) 863 zc8 = {!!} -- ZChain.csupf (pzc (osuc z) (ob<x lim a)) ? -- (o<→≤ <-osuc )
1000 ... | tri≈ ¬a b ¬c = {!!} 864 ... | tri≈ ¬a b ¬c = {!!}