Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison src/Topology.agda @ 1118:441ad880a45d
Product Topology done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 01 Jan 2023 20:28:07 +0900 |
parents | 53ca3c609f0e |
children | 5b0525cb9a5d |
comparison
equal
deleted
inserted
replaced
1117:53ca3c609f0e | 1118:441ad880a45d |
---|---|
193 | 193 |
194 base : {P Q : HOD} → Topology P → Topology Q → HOD | 194 base : {P Q : HOD} → Topology P → Topology Q → HOD |
195 base {P} {Q} TP TQ = record { od = record { def = λ x → BaseP TP Q x ∨ BaseQ P TQ x } ; odmax = & (ZFP P Q) ; <odmax = ? } | 195 base {P} {Q} TP TQ = record { od = record { def = λ x → BaseP TP Q x ∨ BaseQ P TQ x } ; odmax = & (ZFP P Q) ; <odmax = ? } |
196 | 196 |
197 _Top⊗_ : {P Q : HOD} → Topology P → Topology Q → Topology (ZFP P Q) | 197 _Top⊗_ : {P Q : HOD} → Topology P → Topology Q → Topology (ZFP P Q) |
198 _Top⊗_ {P} {Q} TP TQ = GeneratedTopogy (ZFP P Q) (base TP TQ) ? | 198 _Top⊗_ {P} {Q} TP TQ = GeneratedTopogy (ZFP P Q) (base TP TQ) record { P⊆PL = tp00 } where |
199 tp00 : base TP TQ ⊆ Power (ZFP P Q) | |
200 tp00 {z} (case1 record { p = p ; q = q ; op = op ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where | |
201 tp01 : odef (Power (ZFP P Q)) (& (ZFP (* p) Q)) | |
202 tp01 w wz with subst (λ k → odef k w ) *iso wz | |
203 ... | ab-pair {a} {b} pa qb = ZFP→ (subst (λ k → odef P k ) (sym &iso) tp03 ) (subst (λ k → odef Q k ) (sym &iso) qb ) where | |
204 tp03 : odef P a | |
205 tp03 = os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) op) pa | |
206 tp00 {z} (case2 record { p = p ; q = q ; oq = oq ; prod = prod }) = subst (λ k → odef (Power (ZFP P Q)) k ) (sym prod) tp01 where | |
207 tp01 : odef (Power (ZFP P Q)) (& (ZFP P (* q) )) | |
208 tp01 w wz with subst (λ k → odef k w ) *iso wz | |
209 ... | ab-pair {a} {b} pa qb = ZFP→ (subst (λ k → odef P k ) (sym &iso) pa ) (subst (λ k → odef Q k ) (sym &iso) tp03 ) where | |
210 tp03 : odef Q b | |
211 tp03 = os⊆L TQ (subst (λ k → odef (OS TQ) k) (sym &iso) oq) qb | |
199 | 212 |
200 -- existence of Ultra Filter | 213 -- existence of Ultra Filter |
201 | 214 |
202 open Filter | 215 open Filter |
203 | 216 |