comparison src/zorn.agda @ 851:717b8c3f55c9

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 05 Sep 2022 21:54:55 +0900
parents 2d8ce664ae31
children a28bb57c88e6
comparison
equal deleted inserted replaced
850:2d8ce664ae31 851:717b8c3f55c9
736 pcy : odef pchain y 736 pcy : odef pchain y
737 pcy = ⟪ ay , ch-init (init ay refl) ⟫ 737 pcy = ⟪ ay , ch-init (init ay refl) ⟫
738 738
739 supf0 = ZChain.supf zc 739 supf0 = ZChain.supf zc
740 740
741 supf1 : Ordinal → Ordinal 741 supf1 : (px z : Ordinal) → Ordinal
742 supf1 z with trio< z px 742 supf1 px z with trio< z px
743 ... | tri< a ¬b ¬c = ZChain.supf zc z 743 ... | tri< a ¬b ¬c = ZChain.supf zc z
744 ... | tri≈ ¬a b ¬c = ZChain.supf zc z 744 ... | tri≈ ¬a b ¬c = ZChain.supf zc z
745 ... | tri> ¬a ¬b c = ZChain.supf zc px 745 ... | tri> ¬a ¬b c = ZChain.supf zc px
746 746
747 pchain1 : HOD 747 pchain1 : HOD
748 pchain1 = UnionCF A f mf ay supf1 x 748 pchain1 = UnionCF A f mf ay (supf1 px) x
749 749
750 ptotal1 : IsTotalOrderSet pchain1 750 ptotal1 : IsTotalOrderSet pchain1
751 ptotal1 {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where 751 ptotal1 {a} {b} ca cb = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso uz01 where
752 uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) ) 752 uz01 : Tri (* (& a) < * (& b)) (* (& a) ≡ * (& b)) (* (& b) < * (& a) )
753 uz01 = chain-total A f mf ay supf1 ( (proj2 ca)) ( (proj2 cb)) 753 uz01 = chain-total A f mf ay (supf1 px) ( (proj2 ca)) ( (proj2 cb))
754 pchain⊆A1 : {y : Ordinal} → odef pchain1 y → odef A y 754 pchain⊆A1 : {y : Ordinal} → odef pchain1 y → odef A y
755 pchain⊆A1 {y} ny = proj1 ny 755 pchain⊆A1 {y} ny = proj1 ny
756 pnext1 : {a : Ordinal} → odef pchain1 a → odef pchain1 (f a) 756 pnext1 : {a : Ordinal} → odef pchain1 a → odef pchain1 (f a)
757 pnext1 {a} ⟪ aa , ch-init fc ⟫ = ⟪ proj2 (mf a aa) , ch-init (fsuc _ fc) ⟫ 757 pnext1 {a} ⟪ aa , ch-init fc ⟫ = ⟪ proj2 (mf a aa) , ch-init (fsuc _ fc) ⟫
758 pnext1 {a} ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 (mf a aa) , ch-is-sup u u≤x is-sup (fsuc _ fc ) ⟫ 758 pnext1 {a} ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 (mf a aa) , ch-is-sup u u≤x is-sup (fsuc _ fc ) ⟫
759 pinit1 : {y₁ : Ordinal} → odef pchain1 y₁ → * y ≤ * y₁ 759 pinit1 : {y₁ : Ordinal} → odef pchain1 y₁ → * y ≤ * y₁
760 pinit1 {a} ⟪ aa , ua ⟫ with ua 760 pinit1 {a} ⟪ aa , ua ⟫ with ua
761 ... | ch-init fc = s≤fc y f mf fc 761 ... | ch-init fc = s≤fc y f mf fc
762 ... | ch-is-sup u u≤x is-sup fc = ≤-ftrans (<=to≤ zc7) (s≤fc _ f mf fc) where 762 ... | ch-is-sup u u≤x is-sup fc = ≤-ftrans (<=to≤ zc7) (s≤fc _ f mf fc) where
763 zc7 : y <= supf1 u 763 zc7 : y <= supf1 px u
764 zc7 = ChainP.fcy<sup is-sup (init ay refl) 764 zc7 = ChainP.fcy<sup is-sup (init ay refl)
765 pcy1 : odef pchain1 y 765 pcy1 : odef pchain1 y
766 pcy1 = ⟪ ay , ch-init (init ay refl) ⟫ 766 pcy1 = ⟪ ay , ch-init (init ay refl) ⟫
767 767
768 supf0=1 : {z : Ordinal } → z o≤ px → supf0 z ≡ supf1 z 768 supf0=1 : {px z : Ordinal } → z o≤ px → supf0 z ≡ supf1 px z
769 supf0=1 {z} z≤px with trio< z px 769 supf0=1 {px} {z} z≤px with trio< z px
770 ... | tri< a ¬b ¬c = refl 770 ... | tri< a ¬b ¬c = refl
771 ... | tri≈ ¬a b ¬c = refl 771 ... | tri≈ ¬a b ¬c = refl
772 ... | tri> ¬a ¬b c = ⊥-elim ( o≤> z≤px c ) 772 ... | tri> ¬a ¬b c = ⊥-elim ( o≤> z≤px c )
773 773
774 supf∈A : {b : Ordinal} → b o≤ x → odef A (supf1 b) 774 supf∈A : {b : Ordinal} → b o≤ x → odef A (supf1 px b)
775 supf∈A {b} b≤z with trio< b px 775 supf∈A {b} b≤z with trio< b px
776 ... | tri< a ¬b ¬c = proj1 ( ZChain.csupf zc (o<→≤ a )) 776 ... | tri< a ¬b ¬c = proj1 ( ZChain.csupf zc (o<→≤ a ))
777 ... | tri≈ ¬a b ¬c = proj1 ( ZChain.csupf zc (o≤-refl0 b )) 777 ... | tri≈ ¬a b ¬c = proj1 ( ZChain.csupf zc (o≤-refl0 b ))
778 ... | tri> ¬a ¬b c = proj1 ( ZChain.csupf zc o≤-refl ) 778 ... | tri> ¬a ¬b c = proj1 ( ZChain.csupf zc o≤-refl )
779 779
780 supf-mono : {a b : Ordinal } → a o≤ b → supf1 a o≤ supf1 b 780 supf-mono : {a b : Ordinal } → a o≤ b → supf1 px a o≤ supf1 px b
781 supf-mono = ? 781 supf-mono = ?
782 782
783 zc70 : HasPrev A pchain x f → ¬ xSUP pchain x 783 fc0→1 : {px s z : Ordinal } → s o≤ px → FClosure A f (supf0 s) z → FClosure A f (supf1 px s) z
784 zc70 pr xsup = ? 784 fc0→1 {px} {s} {z} s≤px fc = subst (λ k → FClosure A f k z ) (supf0=1 s≤px) fc
785 785
786 fc0→1 : {s z : Ordinal } → s o≤ px → FClosure A f (supf0 s) z → FClosure A f (supf1 s) z 786 fc1→0 : {px s z : Ordinal } → s o≤ px → FClosure A f (supf1 px s) z → FClosure A f (supf0 s) z
787 fc0→1 {s} {z} s≤px fc = subst (λ k → FClosure A f k z ) (supf0=1 s≤px) fc 787 fc1→0 {px} {s} {z} s≤px fc = subst (λ k → FClosure A f k z ) (sym (supf0=1 s≤px)) fc
788 788
789 fc1→0 : {s z : Ordinal } → s o≤ px → FClosure A f (supf1 s) z → FClosure A f (supf0 s) z 789 CP0→1 : {px u : Ordinal } → ({a b : Ordinal } → a o≤ b → supf1 px a o≤ supf1 px b)
790 fc1→0 {s} {z} s≤px fc = subst (λ k → FClosure A f k z ) (sym (supf0=1 s≤px)) fc 790 → u o≤ px → ChainP A f mf ay supf0 u → ChainP A f mf ay (supf1 px) u
791 791 CP0→1 {px} {u} supf-mono u≤px cp = record { fcy<sup = fcy<sup ; order = order ; supu=u = trans (sym (supf0=1 u≤px)) (ChainP.supu=u cp) } where
792 CP0→1 : {u : Ordinal } → u o≤ px → ChainP A f mf ay supf0 u → ChainP A f mf ay supf1 u 792 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 px u) ∨ (z << supf1 px u )
793 CP0→1 {u} u≤px cp = record { fcy<sup = fcy<sup ; order = order ; supu=u = trans (sym (supf0=1 u≤px)) (ChainP.supu=u cp) } where
794 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 u) ∨ (z << supf1 u )
795 fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (supf0=1 u≤px) ( ChainP.fcy<sup cp fc ) 793 fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (supf0=1 u≤px) ( ChainP.fcy<sup cp fc )
796 order : {s : Ordinal} {z2 : Ordinal} → supf1 s o< supf1 u → FClosure A f (supf1 s) z2 → 794 order : {s : Ordinal} {z2 : Ordinal} → supf1 px s o< supf1 px u → FClosure A f (supf1 px s) z2 →
797 (z2 ≡ supf1 u) ∨ (z2 << supf1 u) 795 (z2 ≡ supf1 px u) ∨ (z2 << supf1 px u)
798 order {s} {z2} s<u fc = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (supf0=1 u≤px) ( ChainP.order cp ss<su (fc1→0 s≤px fc )) where 796 order {s} {z2} s<u fc = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (supf0=1 u≤px) ( ChainP.order cp ss<su (fc1→0 s≤px fc )) where
799 s≤px : s o≤ px 797 s≤px : s o≤ px
800 s≤px = ordtrans (supf-inject0 supf-mono s<u) u≤px 798 s≤px = ordtrans (supf-inject0 supf-mono s<u) u≤px
801 ss<su : supf0 s o< supf0 u 799 ss<su : supf0 s o< supf0 u
802 ss<su = subst₂ (λ j k → j o< k ) (sym (supf0=1 s≤px )) (sym (supf0=1 u≤px)) s<u 800 ss<su = subst₂ (λ j k → j o< k ) (sym (supf0=1 s≤px )) (sym (supf0=1 u≤px)) s<u
803 801
804 CP1→0 : {u : Ordinal } → u o≤ px → ChainP A f mf ay supf1 u → ChainP A f mf ay supf0 u 802 CP1→0 : {px u : Ordinal } → ( {a b : Ordinal } → a o≤ b → supf1 px a o≤ supf1 px b)
805 CP1→0 {u} u≤px cp = record { fcy<sup = fcy<sup ; order = order ; supu=u = trans (supf0=1 u≤px) (ChainP.supu=u cp) } where 803 → u o≤ px → ChainP A f mf ay (supf1 px) u → ChainP A f mf ay supf0 u
804 CP1→0 {px} {u} supf-mono u≤px cp = record { fcy<sup = fcy<sup ; order = order ; supu=u = trans (supf0=1 u≤px) (ChainP.supu=u cp) } where
806 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf0 u) ∨ (z << supf0 u ) 805 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf0 u) ∨ (z << supf0 u )
807 fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (sym (supf0=1 u≤px)) ( ChainP.fcy<sup cp fc ) 806 fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) (sym (supf0=1 u≤px)) ( ChainP.fcy<sup cp fc )
808 order : {s : Ordinal} {z2 : Ordinal} → supf0 s o< supf0 u → FClosure A f (supf0 s) z2 → 807 order : {s : Ordinal} {z2 : Ordinal} → supf0 s o< supf0 u → FClosure A f (supf0 s) z2 →
809 (z2 ≡ supf0 u) ∨ (z2 << supf0 u) 808 (z2 ≡ supf0 u) ∨ (z2 << supf0 u)
810 order {s} {z2} s<u fc = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym (supf0=1 u≤px)) ( ChainP.order cp ss<su (fc0→1 s≤px fc )) where 809 order {s} {z2} s<u fc = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) (sym (supf0=1 u≤px)) ( ChainP.order cp ss<su (fc0→1 s≤px fc )) where
811 s≤px : s o≤ px 810 s≤px : s o≤ px
812 s≤px = ordtrans (supf-inject0 (ZChain.supf-mono zc) s<u) u≤px 811 s≤px = ordtrans (supf-inject0 (ZChain.supf-mono zc) s<u) u≤px
813 ss<su : supf1 s o< supf1 u 812 ss<su : supf1 px s o< supf1 px u
814 ss<su = subst₂ (λ j k → j o< k ) (supf0=1 s≤px ) (supf0=1 u≤px) s<u 813 ss<su = subst₂ (λ j k → j o< k ) (supf0=1 s≤px ) (supf0=1 u≤px) s<u
815 814
816 UnionCF0⊆1 : {z : Ordinal } → z o≤ px → UnionCF A f mf ay supf0 z ⊆' UnionCF A f mf ay supf1 z 815 UnionCF0⊆1 : {px z : Ordinal } → ({a b : Ordinal } → a o≤ b → supf1 px a o≤ supf1 px b) → z o≤ px → UnionCF A f mf ay supf0 z ⊆' UnionCF A f mf ay (supf1 px) z
817 UnionCF0⊆1 {z} z≤px ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ 816 UnionCF0⊆1 {px} {z} supf-mono z≤px ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫
818 UnionCF0⊆1 {z} z≤px ⟪ au , ch-is-sup u u≤z is-sup fc ⟫ = 817 UnionCF0⊆1 {px} {z} supf-mono z≤px ⟪ au , ch-is-sup u u≤z is-sup fc ⟫ =
819 ⟪ au , ch-is-sup u u≤z (CP0→1 (OrdTrans u≤z z≤px ) is-sup) (fc0→1 (OrdTrans u≤z z≤px ) fc) ⟫ 818 ⟪ au , ch-is-sup u u≤z (CP0→1 supf-mono (OrdTrans u≤z z≤px ) is-sup) (fc0→1 (OrdTrans u≤z z≤px ) fc) ⟫
820 819
821 UnionCF1⊆0 : {z : Ordinal } → z o≤ px → UnionCF A f mf ay supf1 z ⊆' UnionCF A f mf ay supf0 z 820 UnionCF1⊆0 : {px z : Ordinal } → ({a b : Ordinal } → a o≤ b → supf1 px a o≤ supf1 px b) → z o≤ px → UnionCF A f mf ay (supf1 px) z ⊆' UnionCF A f mf ay supf0 z
822 UnionCF1⊆0 {z} z≤px ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ 821 UnionCF1⊆0 {px} {z} supf-mono z≤px ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫
823 UnionCF1⊆0 {z} z≤px ⟪ au , ch-is-sup u u≤z is-sup fc ⟫ = 822 UnionCF1⊆0 {px} {z} supf-mono z≤px ⟪ au , ch-is-sup u u≤z is-sup fc ⟫ =
824 ⟪ au , ch-is-sup u u≤z (CP1→0 (OrdTrans u≤z z≤px ) is-sup) 823 ⟪ au , ch-is-sup u u≤z (CP1→0 supf-mono (OrdTrans u≤z z≤px ) is-sup)
825 (fc1→0 (OrdTrans u≤z z≤px ) fc) ⟫ 824 (fc1→0 (OrdTrans u≤z z≤px ) fc) ⟫
826 825
827 -- zc100 : xSUP (UnionCF A f mf ay supf0 px) x → x ≡ sp1 826 -- zc100 : xSUP (UnionCF A f mf ay supf0 px) x → x ≡ sp1
828 -- zc100 = ? 827 -- zc100 = ?
829 828
830 -- if previous chain satisfies maximality, we caan reuse it 829 -- if previous chain satisfies maximality, we caan reuse it
831 -- 830 --
832 -- supf0 px is sup of UnionCF px , supf0 x is sup of UnionCF x 831 -- supf0 px is sup of UnionCF px , supf0 x is sup of UnionCF x
833 832
834 no-extension : ¬ xSUP (UnionCF A f mf ay supf0 px) x → ZChain A f mf ay x 833 no-extension : ¬ xSUP (UnionCF A f mf ay supf0 px) x → ZChain A f mf ay x
835 no-extension ¬sp=x = record { supf = supf1 ; sup = sup ; supf-mono = supf-mono 834 no-extension ¬sp=x = record { supf = supf1 px ; sup = sup ; supf-mono = supf-mono
836 ; initial = pinit1 ; chain∋init = pcy1 ; sup=u = sup=u ; supf-is-sup = sis ; csupf = csupf 835 ; initial = pinit1 ; chain∋init = pcy1 ; sup=u = sup=u ; supf-is-sup = sis ; csupf = csupf
837 ; chain⊆A = λ lt → proj1 lt ; f-next = pnext1 ; f-total = ptotal1 } where 836 ; chain⊆A = λ lt → proj1 lt ; f-next = pnext1 ; f-total = ptotal1 } where
838 pchain0=1 : pchain ≡ pchain1 837 pchain0=1 : pchain ≡ pchain1
839 pchain0=1 = ==→o≡ record { eq→ = zc10 ; eq← = zc11 } where 838 pchain0=1 = ==→o≡ record { eq→ = zc10 ; eq← = zc11 } where
840 zc10 : {z : Ordinal} → OD.def (od pchain) z → OD.def (od pchain1) z 839 zc10 : {z : Ordinal} → OD.def (od pchain) z → OD.def (od pchain1) z
841 zc10 {z} ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ 840 zc10 {z} ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫
842 zc10 {z} ⟪ az , ch-is-sup u1 u1≤x u1-is-sup fc ⟫ = ⟪ az , ch-is-sup u1 (ordtrans u1≤x (osucc (pxo<x op))) (CP0→1 u1≤x u1-is-sup) (fc0→1 u1≤x fc) ⟫ 841 zc10 {z} ⟪ az , ch-is-sup u1 u1≤x u1-is-sup fc ⟫ = ⟪ az , ch-is-sup u1 (ordtrans u1≤x (osucc (pxo<x op))) (CP0→1 supf-mono u1≤x u1-is-sup) (fc0→1 u1≤x fc) ⟫
843 zc11 : {z : Ordinal} → OD.def (od pchain1) z → OD.def (od pchain) z 842 zc11 : {z : Ordinal} → OD.def (od pchain1) z → OD.def (od pchain) z
844 zc11 {z} ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫ 843 zc11 {z} ⟪ az , ch-init fc ⟫ = ⟪ az , ch-init fc ⟫
845 zc11 {z} ⟪ az , ch-is-sup u1 u1≤x u1-is-sup fc ⟫ with osuc-≡< u1≤x 844 zc11 {z} ⟪ az , ch-is-sup u1 u1≤x u1-is-sup fc ⟫ with osuc-≡< u1≤x
846 ... | case1 eq = ⊥-elim (¬sp=x zcsup) where 845 ... | case2 lt = ⟪ az , ch-is-sup u1 u1≤px (CP1→0 supf-mono u1≤px u1-is-sup) (fc1→0 u1≤px fc) ⟫ where
847 x<sup : {w : Ordinal} → odef (UnionCF A f mf ay supf0 px) w → (w ≡ x) ∨ (w << x)
848 x<sup = ?
849 zc12 : supf1 x ≡ u1
850 zc12 = subst (λ k → supf1 k ≡ u1) eq (ChainP.supu=u u1-is-sup)
851 zcsup : xSUP (UnionCF A f mf ay supf0 px) x
852 zcsup = record { ax = subst (λ k → odef A k) (trans zc12 eq) (supf∈A o≤-refl) ; is-sup = record { x<sup = x<sup } }
853 ... | case2 lt = ⟪ az , ch-is-sup u1 u1≤px (CP1→0 u1≤px u1-is-sup) (fc1→0 u1≤px fc) ⟫ where
854 u1≤px : u1 o≤ px 846 u1≤px : u1 o≤ px
855 u1≤px = (subst (λ k → u1 o< k) (sym (Oprev.oprev=x op)) lt) 847 u1≤px = (subst (λ k → u1 o< k) (sym (Oprev.oprev=x op)) lt)
856 sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf1 z) 848 ... | case1 eq = ⊥-elim (¬sp=x zcsup) where
857 sup {z} z≤x with trio< z px | inspect supf1 z 849 s1u=x : supf1 px u1 ≡ x
858 ... | tri< a ¬b ¬c | record { eq = eq1} = SUP⊆ (UnionCF1⊆0 (o<→≤ a)) (ZChain.sup zc (o<→≤ a) ) 850 s1u=x = trans (ChainP.supu=u u1-is-sup) eq
859 ... | tri≈ ¬a b ¬c | record { eq = eq1} = SUP⊆ (UnionCF1⊆0 (o≤-refl0 b)) (ZChain.sup zc (o≤-refl0 b) ) 851 zc13 : osuc px o< osuc u1
860 ... | tri> ¬a ¬b px<z | record { eq = eq1} = ? where 852 zc13 = o≤-refl0 ( trans (Oprev.oprev=x op) (sym eq) )
853 x<sup : {w : Ordinal} → odef (UnionCF A f mf ay supf0 px) w → (w ≡ x) ∨ (w << x)
854 x<sup {w} ⟪ az , ch-init {w} fc ⟫ = subst (λ k → (w ≡ k) ∨ (w << k)) s1u=x
855 ( ChainP.fcy<sup u1-is-sup {w} fc )
856 x<sup {w} ⟪ az , ch-is-sup u u≤x is-sup fc ⟫ with osuc-≡< ( supf-mono (ordtrans u≤x zc13 ))
857 ... | case1 eq1 = ⊥-elim ( o<¬≡ zc14 u≤x ) where
858 zc14 : u ≡ osuc px
859 zc14 = begin
860 u ≡⟨ sym ( ChainP.supu=u is-sup) ⟩
861 supf0 u ≡⟨ supf0=1 u≤x ⟩
862 supf1 px u ≡⟨ eq1 ⟩
863 supf1 px u1 ≡⟨ s1u=x ⟩
864 x ≡⟨ sym (Oprev.oprev=x op) ⟩
865 osuc px ∎ where open ≡-Reasoning
866 ... | case2 lt = subst (λ k → (w ≡ k) ∨ (w << k)) s1u=x ( ChainP.order u1-is-sup lt (fc0→1 u≤x fc) )
867 zc12 : supf1 px x ≡ u1
868 zc12 = subst (λ k → supf1 px k ≡ u1) eq (ChainP.supu=u u1-is-sup)
869 zcsup : xSUP (UnionCF A f mf ay supf0 px) x
870 zcsup = record { ax = subst (λ k → odef A k) (trans zc12 eq) (supf∈A o≤-refl)
871 ; is-sup = record { x<sup = x<sup } }
872 sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay (supf1 px) z)
873 sup {z} z≤x with trio< z px | inspect (supf1 px) z
874 ... | tri< a ¬b ¬c | record { eq = eq1} = SUP⊆ (UnionCF1⊆0 supf-mono (o<→≤ a)) (ZChain.sup zc (o<→≤ a) )
875 ... | tri≈ ¬a b ¬c | record { eq = eq1} = SUP⊆ (UnionCF1⊆0 supf-mono (o≤-refl0 b)) (ZChain.sup zc (o≤-refl0 b) )
876 ... | tri> ¬a ¬b px<z | record { eq = eq1} = subst (λ k → SUP A k )
877 (trans pchain0=1 (cong (λ k → UnionCF A f mf ay (supf1 px) k ) (sym zc30) )) (ZChain.sup zc o≤-refl ) where
861 zc30 : z ≡ x 878 zc30 : z ≡ x
862 zc30 with osuc-≡< z≤x 879 zc30 with osuc-≡< z≤x
863 ... | case1 eq = eq 880 ... | case1 eq = eq
864 ... | case2 z<x = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) z<x ⟫ ) 881 ... | case2 z<x = ⊥-elim (¬p<x<op ⟪ px<z , subst (λ k → z o< k ) (sym (Oprev.oprev=x op)) z<x ⟫ )
865 sup=u : {b : Ordinal} (ab : odef A b) → 882 sup=u : {b : Ordinal} (ab : odef A b) →
866 b o≤ x → IsSup A (UnionCF A f mf ay supf1 b) ab → supf1 b ≡ b 883 b o≤ x → IsSup A (UnionCF A f mf ay (supf1 px) b) ab → (supf1 px) b ≡ b
867 sup=u {b} ab b≤x is-sup with trio< b px 884 sup=u {b} ab b≤x is-sup with trio< b px
868 ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) record { x<sup = λ lt → IsSup.x<sup is-sup (UnionCF0⊆1 (o<→≤ a) lt) } 885 ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) record { x<sup = λ lt → IsSup.x<sup is-sup (UnionCF0⊆1 supf-mono (o<→≤ a) lt) }
869 ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (o≤-refl0 b) record { x<sup = λ lt → IsSup.x<sup is-sup (UnionCF0⊆1 (o≤-refl0 b) lt) } 886 ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (o≤-refl0 b) record { x<sup = λ lt → IsSup.x<sup is-sup (UnionCF0⊆1 supf-mono (o≤-refl0 b) lt) }
870 ... | tri> ¬a ¬b px<b = ⊥-elim (¬sp=x zcsup ) where 887 ... | tri> ¬a ¬b px<b = ⊥-elim (¬sp=x zcsup ) where
871 zc30 : x ≡ b 888 zc30 : x ≡ b
872 zc30 with osuc-≡< b≤x 889 zc30 with osuc-≡< b≤x
873 ... | case1 eq = sym (eq) 890 ... | case1 eq = sym (eq)
874 ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) 891 ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ )
875 zcsup : xSUP (UnionCF A f mf ay supf0 px) x 892 zcsup : xSUP (UnionCF A f mf ay supf0 px) x
876 zcsup with zc30 893 zcsup with zc30
877 ... | refl = record { ax = ab ; is-sup = record { x<sup = λ {w} lt → 894 ... | refl = record { ax = ab ; is-sup = record { x<sup = λ {w} lt →
878 IsSup.x<sup is-sup (subst (λ k → odef k w) pchain0=1 lt) } } 895 IsSup.x<sup is-sup (subst (λ k → odef k w) pchain0=1 lt) } }
879 csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf1 (supf1 b)) (supf1 b) 896 csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay (supf1 px) (supf1 px b)) (supf1 px b)
880 csupf {b} b≤x = ⟪ zc01 , ch-is-sup u o≤-refl 897 csupf {b} b≤x = ⟪ zc01 , ch-is-sup u o≤-refl
881 record { fcy<sup = fcy<sup ; order = order ; supu=u = supu=u } fc ⟫ where 898 record { fcy<sup = fcy<sup ; order = order ; supu=u = supu=u } fc ⟫ where
882 csupf0 : b o≤ px → odef (UnionCF A f mf ay supf0 (supf1 b)) (supf1 b) 899 csupf0 : b o≤ px → odef (UnionCF A f mf ay supf0 (supf1 px b)) (supf1 px b)
883 csupf0 b≤px = subst (λ k → odef (UnionCF A f mf ay supf0 k) k ) (supf0=1 b≤px) ( ZChain.csupf zc b≤px ) 900 csupf0 b≤px = subst (λ k → odef (UnionCF A f mf ay supf0 k) k ) (supf0=1 b≤px) ( ZChain.csupf zc b≤px )
884 zc04 : (b o≤ px ) ∨ (b ≡ x ) 901 zc04 : (b o≤ px ) ∨ (b ≡ x )
885 zc04 with trio< b px 902 zc04 with trio< b px
886 ... | tri< a ¬b ¬c = case1 (o<→≤ a) 903 ... | tri< a ¬b ¬c = case1 (o<→≤ a)
887 ... | tri≈ ¬a b ¬c = case1 (o≤-refl0 b) 904 ... | tri≈ ¬a b ¬c = case1 (o≤-refl0 b)
888 ... | tri> ¬a ¬b px<b with osuc-≡< b≤x 905 ... | tri> ¬a ¬b px<b with osuc-≡< b≤x
889 ... | case1 eq = case2 eq 906 ... | case1 eq = case2 eq
890 ... | case2 b<x = ⊥-elim ( ¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) 907 ... | case2 b<x = ⊥-elim ( ¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ )
891 zc01 : odef A (supf1 b) 908 zc01 : odef A (supf1 px b)
892 zc01 with zc04 909 zc01 = supf∈A b≤x
893 ... | case1 le = proj1 ( csupf0 le ) 910 u = supf1 px b
894 ... | case2 eq = ? -- subst (λ k → odef A k ) (sym (supf1=sp (o≤-refl0 (sym eq)))) (SUP.as sup1) 911 supu=u : supf1 px u ≡ u
895 u = supf1 b
896 supu=u : supf1 u ≡ u
897 supu=u with zc04 912 supu=u with zc04
898 ... | case2 eq = begin 913 ... | case2 eq = begin
899 supf1 u ≡⟨ ? ⟩ 914 supf1 px u ≡⟨ ? ⟩
915 supf0 px ≡⟨ ? ⟩
900 u ∎ where open ≡-Reasoning 916 u ∎ where open ≡-Reasoning
901 ... | case1 le = subst (λ k → k ≡ u ) (supf0=1 zc05 ) ( ZChain.sup=u zc zc01 zc05 ? ) where 917 ... | case1 le = ? where
902 zc06 : b o≤ px 918 zc06 : b o≤ px
903 zc06 = le 919 zc06 = le
904 zc05 : supf1 b o≤ px 920 zc02 : odef A (supf1 px u)
905 zc05 = ?
906 zc02 : odef A (supf1 u)
907 zc02 = subst (λ k → odef A k ) (sym supu=u) zc01 921 zc02 = subst (λ k → odef A k ) (sym supu=u) zc01
908 zc03 : supf1 u ≡ supf1 b 922 zc03 : supf1 px u ≡ supf1 px b
909 zc03 = ? 923 zc03 = ?
910 fc : FClosure A f (supf1 u) (supf1 b) 924 fc : FClosure A f (supf1 px u) (supf1 px b)
911 fc = init zc02 zc03 925 fc = init zc02 zc03
912 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 u) ∨ (z << supf1 u) 926 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf1 px u) ∨ (z << supf1 px u)
913 fcy<sup = ? 927 fcy<sup = ?
914 order : {s z1 : Ordinal} → supf1 s o< supf1 u → FClosure A f (supf1 s) z1 928 order : {s z1 : Ordinal} → supf1 px s o< supf1 px u → FClosure A f (supf1 px s) z1
915 → (z1 ≡ supf1 u) ∨ (z1 << supf1 u) 929 → (z1 ≡ supf1 px u) ∨ (z1 << supf1 px u)
916 order = ? 930 order = ?
917 sis : {z : Ordinal} (z≤x : z o≤ x) → supf1 z ≡ & (SUP.sup (sup z≤x)) 931 sis : {z : Ordinal} (z≤x : z o≤ x) → supf1 px z ≡ & (SUP.sup (sup z≤x))
918 sis {z} z≤x = zc40 where 932 sis {z} z≤x = zc40 where
919 zc40 : supf1 z ≡ & (SUP.sup (sup z≤x)) -- direct with statment causes error 933 zc40 : supf1 px z ≡ & (SUP.sup (sup z≤x)) -- direct with statment causes error
920 zc40 with trio< z px | inspect supf1 z | inspect sup z≤x 934 zc40 with trio< z px | inspect (supf1 px) z | inspect sup z≤x
921 ... | tri< a ¬b ¬c | record { eq = eq1 } | record { eq = eq2 } = ? 935 ... | tri< a ¬b ¬c | record { eq = eq1 } | record { eq = eq2 } = ?
922 ... | tri≈ ¬a b ¬c | record { eq = eq1 } | record { eq = eq2 } = ? 936 ... | tri≈ ¬a b ¬c | record { eq = eq1 } | record { eq = eq2 } = ?
923 ... | tri> ¬a ¬b c | record { eq = eq1 } | record { eq = eq2 } = ? 937 ... | tri> ¬a ¬b c | record { eq = eq1 } | record { eq = eq2 } = ?
924 938
925 zc4 : ZChain A f mf ay x 939 zc4 : ZChain A f mf ay x
928 ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain.chain zc ) x f ) 942 ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain.chain zc ) x f )
929 -- we have to check adding x preserve is-max ZChain A y f mf x 943 -- we have to check adding x preserve is-max ZChain A y f mf x
930 ... | case1 pr = no-extension {!!} -- we have previous A ∋ z < x , f z ≡ x, so chain ∋ f z ≡ x because of f-next 944 ... | case1 pr = no-extension {!!} -- we have previous A ∋ z < x , f z ≡ x, so chain ∋ f z ≡ x because of f-next
931 ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc ) ax ) 945 ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain.chain zc ) ax )
932 ... | case1 is-sup = -- x is a sup of zc 946 ... | case1 is-sup = -- x is a sup of zc
933 record { supf = psupf1 ; chain⊆A = {!!} ; f-next = {!!} ; f-total = {!!} ; csupf = {!!} ; sup=u = {!!} ; supf-mono = {!!} 947 record { supf = supf1 x ; chain⊆A = {!!} ; f-next = {!!} ; f-total = {!!} ; csupf = {!!} ; sup=u = {!!} ; supf-mono = {!!}
934 ; initial = {!!} ; chain∋init = {!!} ; sup = {!!} ; supf-is-sup = {!!} } where 948 ; initial = {!!} ; chain∋init = {!!} ; sup = {!!} ; supf-is-sup = {!!} } where
935 supx : SUP A (UnionCF A f mf ay supf0 x) 949 supx : SUP A (UnionCF A f mf ay supf0 x)
936 supx = record { sup = * x ; as = subst (λ k → odef A k ) {!!} ax ; x<sup = {!!} } 950 supx = record { sup = * x ; as = subst (λ k → odef A k ) {!!} ax ; x<sup = {!!} }
937 spx = & (SUP.sup supx ) 951 spx = & (SUP.sup supx )
938 x=spx : x ≡ spx 952 x=spx : x ≡ spx
939 x=spx = sym &iso 953 x=spx = sym &iso
940 psupf1 : Ordinal → Ordinal 954 psupf1 : Ordinal → Ordinal
941 psupf1 z with trio< z x 955 psupf1 z = supf1 x z
942 ... | tri< a ¬b ¬c = ZChain.supf zc z
943 ... | tri≈ ¬a b ¬c = x
944 ... | tri> ¬a ¬b c = x
945 csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay psupf1 b) (psupf1 b) 956 csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay psupf1 b) (psupf1 b)
946 csupf {b} b≤x with trio< b px | inspect psupf1 b 957 csupf {b} b≤x with trio< b px | inspect psupf1 b
947 ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ {!!} , {!!} ⟫ 958 ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ {!!} , {!!} ⟫
948 ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ {!!} , {!!} ⟫ 959 ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ {!!} , {!!} ⟫
949 ... | tri> ¬a ¬b c | record { eq = eq1 } = {!!} where -- b ≡ x, supf x ≡ sp 960 ... | tri> ¬a ¬b c | record { eq = eq1 } = {!!} where -- b ≡ x, supf x ≡ sp