comparison src/Topology.agda @ 1188:8cbc3918d875

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 26 Feb 2023 11:16:32 +0900
parents d996fe8dd116
children 0201827b08ac
comparison
equal deleted inserted replaced
1187:d996fe8dd116 1188:8cbc3918d875
278 L∋limit {X} CX fip {x} xx = cs⊆L top (subst (λ k → odef (CS top) k) (sym &iso) (CX xx)) (is-limit CX fip xx) 278 L∋limit {X} CX fip {x} xx = cs⊆L top (subst (λ k → odef (CS top) k) (sym &iso) (CX xx)) (is-limit CX fip xx)
279 279
280 -- Compact 280 -- Compact
281 281
282 data Finite-∪ (S : HOD) : Ordinal → Set n where 282 data Finite-∪ (S : HOD) : Ordinal → Set n where
283 fin-e : {x : Ordinal } → * x ⊆ S → Finite-∪ S x 283 fin-e : Finite-∪ S o∅
284 fin-∪ : {x y : Ordinal } → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (& (* x ∪ * y)) 284 fin-i : {x : Ordinal } → * x ⊆ S → Finite-∪ S x
285 fin-∪ : {x y : Ordinal } → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (& (* x ∪ * y))
285 286
286 record Compact {L : HOD} (top : Topology L) : Set n where 287 record Compact {L : HOD} (top : Topology L) : Set n where
287 field 288 field
288 finCover : {X : Ordinal } → (* X) ⊆ OS top → (* X) covers L → Ordinal 289 finCover : {X : Ordinal } → (* X) ⊆ OS top → (* X) covers L → Ordinal
289 isCover : {X : Ordinal } → (xo : (* X) ⊆ OS top) → (xcp : (* X) covers L ) → (* (finCover xo xcp )) covers L 290 isCover : {X : Ordinal } → (xo : (* X) ⊆ OS top) → (xcp : (* X) covers L ) → (* (finCover xo xcp )) covers L
299 fip02 : {x : Ordinal } → ¬ odef L x 300 fip02 : {x : Ordinal } → ¬ odef L x
300 fip02 {x} Lx = ⊥-elim ( o<¬≡ (sym b) (∈∅< Lx) ) 301 fip02 {x} Lx = ⊥-elim ( o<¬≡ (sym b) (∈∅< Lx) )
301 fip01 : {X : Ordinal } → (xcp : * X covers L) → (* o∅) covers L 302 fip01 : {X : Ordinal } → (xcp : * X covers L) → (* o∅) covers L
302 fip01 xcp = record { cover = λ Lx → ⊥-elim (fip02 Lx) ; P∋cover = λ Lx → ⊥-elim (fip02 Lx) ; isCover = λ Lx → ⊥-elim (fip02 Lx) } 303 fip01 xcp = record { cover = λ Lx → ⊥-elim (fip02 Lx) ; P∋cover = λ Lx → ⊥-elim (fip02 Lx) ; isCover = λ Lx → ⊥-elim (fip02 Lx) }
303 fip00 : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) o∅ 304 fip00 : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) o∅
304 fip00 {X} xo xcp = fin-e ( λ {x} 0x → ⊥-elim (¬x<0 (subst (λ k → odef k x) o∅≡od∅ 0x) ) ) 305 fip00 {X} xo xcp = fin-e
305 ... | tri> ¬a ¬b 0<L = record { finCover = finCover ; isCover = isCover1 ; isFinite = isFinite } where 306 ... | tri> ¬a ¬b 0<L = record { finCover = finCover ; isCover = isCover1 ; isFinite = isFinite } where
306 -- set of coset of X 307 -- set of coset of X
307 CX : {X : Ordinal} → * X ⊆ OS top → Ordinal 308 CX : {X : Ordinal} → * X ⊆ OS top → Ordinal
308 CX {X} ox = & ( Replace' (* X) (λ z xz → L \ z )) 309 CX {X} ox = & ( Replace (* X) (λ z → L \ z ))
309 CCX : {X : Ordinal} → (os : * X ⊆ OS top) → * (CX os) ⊆ CS top 310 CCX : {X : Ordinal} → (os : * X ⊆ OS top) → * (CX os) ⊆ CS top
310 CCX {X} os {x} ox with subst (λ k → odef k x) *iso ox 311 CCX {X} os {x} ox with subst (λ k → odef k x) *iso ox
311 ... | record { z = z ; az = az ; x=ψz = x=ψz } = ⟪ fip05 , fip06 ⟫ where -- x ≡ & (L \ * z) 312 ... | record { z = z ; az = az ; x=ψz = x=ψz } = ⟪ fip05 , fip06 ⟫ where -- x ≡ & (L \ * z)
312 fip07 : z ≡ & (L \ * x) 313 fip07 : z ≡ & (L \ * x)
313 fip07 = subst₂ (λ j k → j ≡ k) &iso (cong (λ k → & ( L \ k )) (cong (*) (sym x=ψz))) ( cong (&) ( ==→o≡ record { eq→ = fip09 ; eq← = fip08 } )) where 314 fip07 = subst₂ (λ j k → j ≡ k) &iso (cong (λ k → & ( L \ k )) (cong (*) (sym x=ψz))) ( cong (&) ( ==→o≡ record { eq→ = fip09 ; eq← = fip08 } )) where
327 -- then some finite Intersection of (CX X) contains nothing ( contraposition of FIP .i.e. CFIP) 328 -- then some finite Intersection of (CX X) contains nothing ( contraposition of FIP .i.e. CFIP)
328 -- it means there is a finite cover 329 -- it means there is a finite cover
329 -- 330 --
330 record CFIP (X x : Ordinal) : Set n where 331 record CFIP (X x : Ordinal) : Set n where
331 field 332 field
332 is-CS : * x ⊆ Replace' (* X) (λ z xz → L \ z) 333 is-CS : * x ⊆ Replace (* X) (λ z → L \ z)
333 sx : Subbase (* x) o∅ 334 sx : Subbase (* x) o∅
334 Cex : (X : Ordinal ) → HOD 335 Cex : (X : Ordinal ) → HOD
335 Cex X = record { od = record { def = λ x → CFIP X x } ; odmax = osuc (& (Replace' (* X) (λ z xz → L \ z))) ; <odmax = fip05 } where 336 Cex X = record { od = record { def = λ x → CFIP X x } ; odmax = osuc (& (Replace (* X) (λ z → L \ z))) ; <odmax = fip05 } where
336 fip05 : {y : Ordinal} → CFIP X y → y o< osuc (& (Replace' (* X) (λ z xz → L \ z))) 337 fip05 : {y : Ordinal} → CFIP X y → y o< osuc (& (Replace (* X) (λ z → L \ z)))
337 fip05 {y} cf = subst₂ (λ j k → j o< osuc k ) &iso refl ( ⊆→o≤ ( CFIP.is-CS cf ) ) 338 fip05 {y} cf = subst₂ (λ j k → j o< osuc k ) &iso refl ( ⊆→o≤ ( CFIP.is-CS cf ) )
338 fip00 : {X : Ordinal } → * X ⊆ OS top → * X covers L → ¬ ( Cex X =h= od∅ ) 339 fip00 : {X : Ordinal } → * X ⊆ OS top → * X covers L → ¬ ( Cex X =h= od∅ )
339 fip00 {X} ox oc cex=0 = ⊥-elim (fip09 fip25 fip20) where 340 fip00 {X} ox oc cex=0 = ⊥-elim (fip09 fip25 fip20) where
340 -- CX is finite intersection 341 -- CX is finite intersection
341 fip02 : {x : Ordinal} → Subbase (* (CX ox)) x → o∅ o< x 342 fip02 : {x : Ordinal} → Subbase (* (CX ox)) x → o∅ o< x
342 fip02 {x} sc with trio< x o∅ 343 fip02 {x} sc with trio< x o∅
343 ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) 344 ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a )
344 ... | tri> ¬a ¬b c = c 345 ... | tri> ¬a ¬b c = c
345 ... | tri≈ ¬a b ¬c = ⊥-elim (¬x<0 ( _==_.eq→ cex=0 record { is-CS = fip10 ; sx = subst (λ k → Subbase (* (CX ox)) k) b sc } )) where 346 ... | tri≈ ¬a b ¬c = ⊥-elim (¬x<0 ( _==_.eq→ cex=0 record { is-CS = fip10 ; sx = subst (λ k → Subbase (* (CX ox)) k) b sc } )) where
346 fip10 : * (CX ox) ⊆ Replace' (* X) (λ z xz → L \ z) 347 fip10 : * (CX ox) ⊆ Replace (* X) (λ z → L \ z)
347 fip10 {w} cw = subst (λ k → odef k w) *iso cw 348 fip10 {w} cw = subst (λ k → odef k w) *iso cw
348 -- we have some intersection because L is not empty (if we have an element of L, we don't need choice) 349 -- we have some intersection because L is not empty (if we have an element of L, we don't need choice)
349 fip26 : odef (* (CX ox)) (& (L \ * ( cover oc ( ODC.x∋minimal O L (0<P→ne 0<L) ) ))) 350 fip26 : odef (* (CX ox)) (& (L \ * ( cover oc ( ODC.x∋minimal O L (0<P→ne 0<L) ) )))
350 fip26 = subst (λ k → odef k (& (L \ * ( cover oc ( ODC.x∋minimal O L (0<P→ne 0<L) ) )) )) (sym *iso) 351 fip26 = subst (λ k → odef k (& (L \ * ( cover oc ( ODC.x∋minimal O L (0<P→ne 0<L) ) )) )) (sym *iso)
351 record { z = cover oc (x∋minimal L (0<P→ne 0<L)) ; az = P∋cover oc (x∋minimal L (0<P→ne 0<L)) ; x=ψz = refl } 352 record { z = cover oc (x∋minimal L (0<P→ne 0<L)) ; az = P∋cover oc (x∋minimal L (0<P→ne 0<L)) ; x=ψz = refl }
364 CXfip : {X : Ordinal } → (ox : * X ⊆ OS top) → (oc : * X covers L) → CFIP X (cex ox oc) 365 CXfip : {X : Ordinal } → (ox : * X ⊆ OS top) → (oc : * X covers L) → CFIP X (cex ox oc)
365 CXfip {X} ox oc = ODC.x∋minimal O (Cex X) (fip00 ox oc) 366 CXfip {X} ox oc = ODC.x∋minimal O (Cex X) (fip00 ox oc)
366 -- 367 --
367 -- this defines finite cover 368 -- this defines finite cover
368 finCover : {X : Ordinal} → * X ⊆ OS top → * X covers L → Ordinal 369 finCover : {X : Ordinal} → * X ⊆ OS top → * X covers L → Ordinal
369 finCover {X} ox oc = & ( Replace' (* (cex ox oc)) (λ z xz → L \ z )) 370 finCover {X} ox oc = & ( Replace (* (cex ox oc)) (λ z → L \ z ))
370 -- create Finite-∪ from cex 371 -- create Finite-∪ from cex
371 isFinite : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) (finCover xo xcp) 372 isFinite : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → Finite-∪ (* X) (finCover xo xcp)
372 isFinite {X} xo xcp = fip30 (cex xo xcp) o∅ (CFIP.is-CS (CXfip xo xcp)) (CFIP.sx (CXfip xo xcp)) where 373 isFinite {X} xo xcp = fip30 (cex xo xcp) o∅ (CFIP.is-CS (CXfip xo xcp)) (CFIP.sx (CXfip xo xcp)) where
373 fip30 : ( x y : Ordinal ) → * x ⊆ Replace' (* X) (λ z xz → L \ z) → Subbase (* x) y → Finite-∪ (* X) (& (Replace' (* x) (λ z xz → L \ z ))) 374 fip30 : ( x y : Ordinal ) → * x ⊆ Replace (* X) (λ z → L \ z) → Subbase (* x) y → Finite-∪ (* X) (& (Replace (* x) (λ z → L \ z )))
374 fip30 x y x⊆cs (gi sb) = fip31 where 375 fip30 x y x⊆cs (gi sb) = fip31 where
375 fip32 : Replace' (* x) (λ z xz → L \ z) ⊆ * X -- x⊆cs :* x ⊆ Replace' (* X) (λ z₁ xz → L \ z₁) , x=ψz : w ≡ & (L \ * z) , odef (* x) z 376 fip32 : Replace (* x) (λ z → L \ z) ⊆ * X
376 fip32 {w} record { z = z ; az = xz ; x=ψz = x=ψz } with x⊆cs xz 377 fip32 {w} record { z = z ; az = xz ; x=ψz = x=ψz } with x⊆cs xz
377 ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef (* X) k) fip33 az1 where 378 ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef (* X) k) fip33 az1 where
378 fip34 : * z1 ⊆ L 379 fip34 : * z1 ⊆ L
379 fip34 {w} wz1 = os⊆L top (subst (λ k → odef (OS top) k) (sym &iso) (xo az1)) wz1 380 fip34 {w} wz1 = os⊆L top (subst (λ k → odef (OS top) k) (sym &iso) (xo az1)) wz1
380 fip33 : z1 ≡ w 381 fip33 : z1 ≡ w
383 & (* z1) ≡⟨ cong (&) (sym (L\Lx=x fip34 )) ⟩ 384 & (* z1) ≡⟨ cong (&) (sym (L\Lx=x fip34 )) ⟩
384 & (L \ ( L \ * z1)) ≡⟨ cong (λ k → & ( L \ k )) (sym *iso) ⟩ 385 & (L \ ( L \ * z1)) ≡⟨ cong (λ k → & ( L \ k )) (sym *iso) ⟩
385 & (L \ * (& ( L \ * z1))) ≡⟨ cong (λ k → & ( L \ * k )) (sym x=ψz1) ⟩ 386 & (L \ * (& ( L \ * z1))) ≡⟨ cong (λ k → & ( L \ * k )) (sym x=ψz1) ⟩
386 & (L \ * z) ≡⟨ sym x=ψz ⟩ 387 & (L \ * z) ≡⟨ sym x=ψz ⟩
387 w ∎ where open ≡-Reasoning 388 w ∎ where open ≡-Reasoning
388 fip31 : Finite-∪ (* X) (& (Replace' (* x) (λ z xz → L \ z))) 389 -- x⊆cs :* x ⊆ Replace (* X) (λ z₁ xz → L \ z₁) , x=ψz : w ≡ & (L \ * z) , odef (* x) z
389 fip31 = fin-e (subst (λ k → k ⊆ * X ) (sym *iso) fip32 ) 390 fp38 : Subbase (* x) y
391 fp38 = gi sb
392 fp35 : odef (* x) y
393 fp35 = sb
394 fp36 : odef (Replace (* X) (λ z → L \ z)) y
395 fp36 = x⊆cs sb
396 fp37 : odef (* X) (& (L \ * y))
397 fp37 = ?
398 fip31 : Finite-∪ (* X) (& (Replace (* x) (λ z → L \ z)))
399 fip31 = fin-i (subst (λ k → k ⊆ * X ) (sym *iso) fip32 )
390 fip30 x yz x⊆cs (g∩ {y} {z} sy sz) = fip35 where 400 fip30 x yz x⊆cs (g∩ {y} {z} sy sz) = fip35 where
391 fip35 : Finite-∪ (* X) (& (Replace' (* x) (λ z₁ xz → L \ z₁))) 401 fip35 : Finite-∪ (* X) (& (Replace (* x) (λ z₁ → L \ z₁)))
392 fip35 = subst (λ k → Finite-∪ (* X) k) 402 fip35 = subst (λ k → Finite-∪ (* X) k)
393 (cong (&) (subst (λ k → (k ∪ k ) ≡ (Replace' (* x) (λ z₁ xz → L \ z₁)) ) (sym *iso) x∪x≡x )) ( fin-∪ (fip30 _ _ x⊆cs sy) (fip30 _ _ x⊆cs sz) ) 403 (cong (&) (subst (λ k → (k ∪ k ) ≡ (Replace (* x) (λ z₁ → L \ z₁)) ) (sym *iso) x∪x≡x )) ( fin-∪ (fip30 _ _ x⊆cs sy) (fip30 _ _ x⊆cs sz) )
394 -- is also a cover 404 -- is also a cover
395 isCover1 : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → * (finCover xo xcp) covers L 405 isCover1 : {X : Ordinal} (xo : * X ⊆ OS top) (xcp : * X covers L) → * (finCover xo xcp) covers L
396 isCover1 {X} xo xcp = subst₂ (λ j k → j covers k ) (sym *iso) (subst (λ k → L \ k ≡ L) (sym o∅≡od∅) L\0=L) 406 isCover1 {X} xo xcp = subst₂ (λ j k → j covers k ) (sym *iso) (subst (λ k → L \ k ≡ L) (sym o∅≡od∅) L\0=L)
397 ( fip40 (cex xo xcp) o∅ (CFIP.is-CS (CXfip xo xcp)) (CFIP.sx (CXfip xo xcp))) where 407 ( fip40 (cex xo xcp) o∅ (CFIP.is-CS (CXfip xo xcp)) (CFIP.sx (CXfip xo xcp))) where
398 fip45 : {L a b : HOD} → (L \ (a ∩ b)) ⊆ ( (L \ a) ∪ (L \ b)) 408 fip45 : {L a b : HOD} → (L \ (a ∩ b)) ⊆ ( (L \ a) ∪ (L \ b))
411 ... | case2 Lb = P∋cover cb Lb 421 ... | case2 Lb = P∋cover cb Lb
412 fip47 : {x : Ordinal} (lt : odef (L \ (a ∩ b)) x) → odef (* (fip44 lt)) x 422 fip47 : {x : Ordinal} (lt : odef (L \ (a ∩ b)) x) → odef (* (fip44 lt)) x
413 fip47 {x} Lab with fip45 {L} {a} {b} Lab 423 fip47 {x} Lab with fip45 {L} {a} {b} Lab
414 ... | case1 La = isCover ca La 424 ... | case1 La = isCover ca La
415 ... | case2 Lb = isCover cb Lb 425 ... | case2 Lb = isCover cb Lb
416 fip40 : ( x y : Ordinal ) → * x ⊆ Replace' (* X) (λ z xz → L \ z) → Subbase (* x) y 426 fip40 : ( x y : Ordinal ) → * x ⊆ Replace (* X) (λ z → L \ z) → Subbase (* x) y
417 → (Replace' (* x) (λ z xz → L \ z )) covers (L \ * y ) 427 → (Replace (* x) (λ z → L \ z )) covers (L \ * y )
418 fip40 x .(& (* _ ∩ * _)) x⊆r (g∩ {a} {b} sa sb) = subst (λ k → (Replace' (* x) (λ z xz → L \ z)) covers ( L \ k ) ) (sym *iso) 428 fip40 x .(& (* _ ∩ * _)) x⊆r (g∩ {a} {b} sa sb) = subst (λ k → (Replace (* x) (λ z → L \ z)) covers ( L \ k ) ) (sym *iso)
419 ( fip43 {_} {L} {* a} {* b} fip41 fip42 ) where 429 ( fip43 {_} {L} {* a} {* b} fip41 fip42 ) where
420 fip41 : Replace' (* x) (λ z xz → L \ z) covers (L \ * a) 430 fip41 : Replace (* x) (λ z → L \ z) covers (L \ * a)
421 fip41 = fip40 x a x⊆r sa 431 fip41 = fip40 x a x⊆r sa
422 fip42 : Replace' (* x) (λ z xz → L \ z) covers (L \ * b) 432 fip42 : Replace (* x) (λ z → L \ z) covers (L \ * b)
423 fip42 = fip40 x b x⊆r sb 433 fip42 = fip40 x b x⊆r sb
424 fip40 x y x⊆r (gi sb) with x⊆r sb 434 fip40 x y x⊆r (gi sb) with x⊆r sb
425 ... | record { z = z ; az = az ; x=ψz = x=ψz } = record { cover = fip51 ; P∋cover = fip53 ; isCover = fip50 }where 435 ... | record { z = z ; az = az ; x=ψz = x=ψz } = record { cover = fip51 ; P∋cover = fip53 ; isCover = fip50 }where
426 fip51 : {w : Ordinal} (Lyw : odef (L \ * y) w) → Ordinal 436 fip51 : {w : Ordinal} (Lyw : odef (L \ * y) w) → Ordinal
427 fip51 {w} Lyw = z 437 fip51 {w} Lyw = z
433 fip56 = begin 443 fip56 = begin
434 * z ≡⟨ sym (L\Lx=x fip55 ) ⟩ 444 * z ≡⟨ sym (L\Lx=x fip55 ) ⟩
435 L \ ( L \ * z ) ≡⟨ cong (λ k → L \ k) (sym *iso) ⟩ 445 L \ ( L \ * z ) ≡⟨ cong (λ k → L \ k) (sym *iso) ⟩
436 L \ * ( & ( L \ * z )) ≡⟨ cong (λ k → L \ * k) (sym x=ψz) ⟩ 446 L \ * ( & ( L \ * z )) ≡⟨ cong (λ k → L \ * k) (sym x=ψz) ⟩
437 L \ * y ∎ where open ≡-Reasoning 447 L \ * y ∎ where open ≡-Reasoning
438 fip53 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (Replace' (* x) (λ z₁ xz → L \ z₁)) z 448 fip53 : {w : Ordinal} (Lyw : odef (L \ * y) w) → odef (Replace (* x) (λ z₁ → L \ z₁)) z
439 fip53 {w} Lyw = record { z = _ ; az = sb ; x=ψz = fip54 } where 449 fip53 {w} Lyw = record { z = _ ; az = sb ; x=ψz = fip54 } where
440 fip54 : z ≡ & ( L \ * y ) 450 fip54 : z ≡ & ( L \ * y )
441 fip54 = begin 451 fip54 = begin
442 z ≡⟨ sym &iso ⟩ 452 z ≡⟨ sym &iso ⟩
443 & (* z) ≡⟨ cong (&) fip56 ⟩ 453 & (* z) ≡⟨ cong (&) fip56 ⟩
453 ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) 463 ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a )
454 ... | tri≈ ¬a b ¬c = record { limit = ? ; is-limit = ? } 464 ... | tri≈ ¬a b ¬c = record { limit = ? ; is-limit = ? }
455 ... | tri> ¬a ¬b 0<L = record { limit = limit ; is-limit = fip00 } where 465 ... | tri> ¬a ¬b 0<L = record { limit = limit ; is-limit = fip00 } where
456 -- set of coset of X 466 -- set of coset of X
457 OX : {X : Ordinal} → * X ⊆ CS top → Ordinal 467 OX : {X : Ordinal} → * X ⊆ CS top → Ordinal
458 OX {X} ox = & ( Replace' (* X) (λ z xz → L \ z )) 468 OX {X} ox = & ( Replace (* X) (λ z → L \ z ))
459 OOX : {X : Ordinal} → (cs : * X ⊆ CS top) → * (OX cs) ⊆ OS top 469 OOX : {X : Ordinal} → (cs : * X ⊆ CS top) → * (OX cs) ⊆ OS top
460 OOX {X} cs {x} ox with subst (λ k → odef k x) *iso ox 470 OOX {X} cs {x} ox with subst (λ k → odef k x) *iso ox
461 ... | record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef (OS top) k) (sym x=ψz) ( P\CS=OS top (cs comp01)) where 471 ... | record { z = z ; az = az ; x=ψz = x=ψz } = subst (λ k → odef (OS top) k) (sym x=ψz) ( P\CS=OS top (cs comp01)) where
462 comp01 : odef (* X) (& (* z)) 472 comp01 : odef (* X) (& (* z))
463 comp01 = subst (λ k → odef (* X) k) (sym &iso) az 473 comp01 = subst (λ k → odef (* X) k) (sym &iso) az
475 no-cover : ¬ ( (* (OX CX)) covers L ) 485 no-cover : ¬ ( (* (OX CX)) covers L )
476 no-cover cov = ⊥-elim ( ? ) where 486 no-cover cov = ⊥-elim ( ? ) where
477 fp01 : Ordinal 487 fp01 : Ordinal
478 fp01 = Compact.finCover compact (OOX CX) cov 488 fp01 = Compact.finCover compact (OOX CX) cov
479 fp02 : (t : Ordinal) → Finite-∪ (* (OX CX)) t → Subbase (* X) (& ( L \ * t ) ) 489 fp02 : (t : Ordinal) → Finite-∪ (* (OX CX)) t → Subbase (* X) (& ( L \ * t ) )
480 fp02 t (fin-e t⊆OX ) = gi fp03 where 490 fp02 t fin-e = gi ?
491 fp02 t (fin-i tx ) = gi fp03 where
481 fp03 : odef (* X) (& (L \ * t)) 492 fp03 : odef (* X) (& (L \ * t))
482 fp03 = ? 493 fp03 = ?
483 fp02 t (fin-∪ {tx} {ty} x y ) = subst (λ k → Subbase (* X) k ) fp04 ( g∩ (fp02 tx x) (fp02 ty y ) ) where 494 fp02 t (fin-∪ {tx} {ty} x y ) = subst (λ k → Subbase (* X) k ) fp04 ( g∩ (fp02 tx x) (fp02 ty y ) ) where
484 fp04 : & (* (& (L \ * tx)) ∩ * (& (L \ * ty))) ≡ & (L \ * (& (* tx ∪ * ty))) 495 fp04 : & (* (& (L \ * tx)) ∩ * (& (L \ * ty))) ≡ & (L \ * (& (* tx ∪ * ty)))
485 fp04 = cong (&) ( ==→o≡ record { eq→ = fp05 ; eq← = fp09 } ) where 496 fp04 = cong (&) ( ==→o≡ record { eq→ = fp05 ; eq← = fp09 } ) where