comparison src/zorn.agda @ 661:9142e834c4c6

fix
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 03 Jul 2022 06:10:51 +0900
parents db9477c80dce
children a45ec34b9fa7
comparison
equal deleted inserted replaced
656:db9477c80dce 661:9142e834c4c6
237 field 237 field
238 sup : HOD 238 sup : HOD
239 A∋maximal : A ∋ sup 239 A∋maximal : A ∋ sup
240 x<sup : {x : HOD} → B ∋ x → (x ≡ sup ) ∨ (x < sup ) -- B is Total, use positive 240 x<sup : {x : HOD} → B ∋ x → (x ≡ sup ) ∨ (x < sup ) -- B is Total, use positive
241 241
242 record UChain (chain : Ordinal → HOD) (x : Ordinal) (z : Ordinal) : Set n where 242 record UChain (x : Ordinal) (chain : (z : Ordinal ) → z o< x → HOD) (z : Ordinal) : Set n where
243 -- Union of supf z which o< x 243 -- Union of supf z which o< x
244 field 244 field
245 u : Ordinal 245 u : Ordinal
246 u<x : u o< x 246 u<x : u o< x
247 chain∋z : odef (chain u) z 247 chain∋z : odef (chain u u<x) z
248 248
249 ∈∧P→o< : {A : HOD } {y : Ordinal} → {P : Set n} → odef A y ∧ P → y o< & A 249 ∈∧P→o< : {A : HOD } {y : Ordinal} → {P : Set n} → odef A y ∧ P → y o< & A
250 ∈∧P→o< {A } {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) 250 ∈∧P→o< {A } {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p )))
251 251
252 data Chain (A : HOD ) ( f : Ordinal → Ordinal ) {y : Ordinal} (ay : odef A y) : Ordinal → HOD → Set (Level.suc n) where 252 data Chain (A : HOD ) ( f : Ordinal → Ordinal ) {y : Ordinal} (ay : odef A y) : Ordinal → HOD → Set (Level.suc n) where
257 ( c : Chain A f ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( sup : IsSup A chain ax ) → Chain A f ay x 257 ( c : Chain A f ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( sup : IsSup A chain ax ) → Chain A f ay x
258 record { od = record { def = λ x → odef A x ∧ (odef chain x ∨ (FClosure A f y x)) } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } 258 record { od = record { def = λ x → odef A x ∧ (odef chain x ∨ (FClosure A f y x)) } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy }
259 ch-skip : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) ( ax : odef A x ) 259 ch-skip : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) ( ax : odef A x )
260 ( c : Chain A f ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( nsup : ¬ IsSup A chain ax ) → Chain A f ay x chain 260 ( c : Chain A f ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( nsup : ¬ IsSup A chain ax ) → Chain A f ay x chain
261 ch-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) 261 ch-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x )
262 → ( chainf : Ordinal → HOD ) → ( lt : ( z : Ordinal ) → z o< x → Chain A f ay z ( chainf z )) 262 → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f ay z ( chainf z z<x ))
263 → Chain A f ay x 263 → Chain A f ay x
264 record { od = record { def = λ z → odef A z ∧ (UChain chainf x z ∨ FClosure A f y z ) } 264 record { od = record { def = λ z → odef A z ∧ (UChain x chainf z ∨ FClosure A f y z ) }
265 ; odmax = & A ; <odmax = λ {y} sy → {!!} } 265 ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy }
266
267 Chain-uniq : (A : HOD ) ( f : Ordinal → Ordinal ) → {y : Ordinal} (ay : odef A y) → (x : Ordinal)
268 → ( Ordinal → HOD ) → Set (Level.suc n)
269 Chain-uniq A f {y} ay x chain with Oprev-p x
270 ... | yes op = st1 where
271 px = Oprev.oprev op
272 st1 : Set (Level.suc n)
273 st1 with ODC.∋-p O A (* x)
274 ... | no noax = chain x ≡ chain px
275 ... | yes ax with ODC.p∨¬p O ( HasPrev A (chain px) ax f )
276 ... | case1 pr = chain x ≡ chain px
277 ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (chain px) ax )
278 ... | case1 is-sup = chain x ≡ schain where
279 schain : HOD
280 schain = record { od = record { def = λ x → odef (chain px) x ∨ (FClosure A f y x) } ; odmax = & A ; <odmax = λ {y} sy → {!!} }
281 ... | case2 ¬x=sup = chain x ≡ chain px
282 ... | no ¬ox = chain x ≡ record { od = record { def = λ z → odef A z ∧ ( UChain chain x z ∨ FClosure A f y z ) } ; odmax = & A ; <odmax = λ {y} sy → {!!} }
283 266
284 record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) {y : Ordinal } (ay : odef A y ) ( z : Ordinal ) : Set (Level.suc n) where 267 record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) {y : Ordinal } (ay : odef A y ) ( z : Ordinal ) : Set (Level.suc n) where
285 field 268 field
286 chain : Ordinal → HOD 269 chain : HOD
287 chain-mono : {x : Ordinal} → x o≤ z → chain x ⊆' chain z 270 chain-uniq : Chain A f ay z chain
288 chain-uniq : Chain-uniq A f ay z chain 271
289 272 record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) {init : Ordinal} (ay : odef A init) (zc0 : (x : Ordinal) → ZChain1 A f ay x ) ( z : Ordinal ) : Set (Level.suc n) where
290 record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) {init : Ordinal} (ay : odef A init) (zc0 : ZChain1 A f ay (& A) ) ( z : Ordinal ) : Set (Level.suc n) where
291 chain : HOD 273 chain : HOD
292 chain = ZChain1.chain zc0 z 274 chain = ZChain1.chain (zc0 z)
293 field 275 field
294 chain⊆A : chain ⊆' A 276 chain⊆A : chain ⊆' A
295 chain∋init : odef chain init 277 chain∋init : odef chain init
296 initial : {y : Ordinal } → odef chain y → * init ≤ * y 278 initial : {y : Ordinal } → odef chain y → * init ≤ * y
297 f-next : {a : Ordinal } → odef chain a → odef chain (f a) 279 f-next : {a : Ordinal } → odef chain a → odef chain (f a)
361 cf-is-<-monotonic : (nmx : ¬ Maximal A ) → (x : Ordinal) → odef A x → ( * x < * (cf nmx x) ) ∧ odef A (cf nmx x ) 343 cf-is-<-monotonic : (nmx : ¬ Maximal A ) → (x : Ordinal) → odef A x → ( * x < * (cf nmx x) ) ∧ odef A (cf nmx x )
362 cf-is-<-monotonic nmx x ax = ⟪ proj2 (is-cf nmx ax ) , proj1 (is-cf nmx ax ) ⟫ 344 cf-is-<-monotonic nmx x ax = ⟪ proj2 (is-cf nmx ax ) , proj1 (is-cf nmx ax ) ⟫
363 cf-is-≤-monotonic : (nmx : ¬ Maximal A ) → ≤-monotonic-f A ( cf nmx ) 345 cf-is-≤-monotonic : (nmx : ¬ Maximal A ) → ≤-monotonic-f A ( cf nmx )
364 cf-is-≤-monotonic nmx x ax = ⟪ case2 (proj1 ( cf-is-<-monotonic nmx x ax )) , proj2 ( cf-is-<-monotonic nmx x ax ) ⟫ 346 cf-is-≤-monotonic nmx x ax = ⟪ case2 (proj1 ( cf-is-<-monotonic nmx x ax )) , proj2 ( cf-is-<-monotonic nmx x ax ) ⟫
365 347
366 sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : ZChain1 A f as0 (& A) ) (zc : ZChain A f as0 zc0 (& A) ) 348 sp0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : (x : Ordinal) → ZChain1 A f as0 x ) (zc : ZChain A f as0 zc0 (& A) )
367 (total : IsTotalOrderSet (ZChain.chain zc) ) → SUP A (ZChain.chain zc) 349 (total : IsTotalOrderSet (ZChain.chain zc) ) → SUP A (ZChain.chain zc)
368 sp0 f mf zc0 zc total = supP (ZChain.chain zc) (ZChain.chain⊆A zc) total 350 sp0 f mf zc0 zc total = supP (ZChain.chain zc) (ZChain.chain⊆A zc) total
369 zc< : {x y z : Ordinal} → {P : Set n} → (x o< y → P) → x o< z → z o< y → P 351 zc< : {x y z : Ordinal} → {P : Set n} → (x o< y → P) → x o< z → z o< y → P
370 zc< {x} {y} {z} {P} prev x<z z<y = prev (ordtrans x<z z<y) 352 zc< {x} {y} {z} {P} prev x<z z<y = prev (ordtrans x<z z<y)
371 353
372 --- 354 ---
373 --- the maximum chain has fix point of any ≤-monotonic function 355 --- the maximum chain has fix point of any ≤-monotonic function
374 --- 356 ---
375 fixpoint : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : ZChain1 A f as0 (& A)) (zc : ZChain A f as0 zc0 (& A) ) 357 fixpoint : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) (zc0 : (x : Ordinal) → ZChain1 A f as0 x) (zc : ZChain A f as0 zc0 (& A) )
376 → (total : IsTotalOrderSet (ZChain.chain zc) ) 358 → (total : IsTotalOrderSet (ZChain.chain zc) )
377 → f (& (SUP.sup (sp0 f mf zc0 zc total ))) ≡ & (SUP.sup (sp0 f mf zc0 zc total)) 359 → f (& (SUP.sup (sp0 f mf zc0 zc total ))) ≡ & (SUP.sup (sp0 f mf zc0 zc total))
378 fixpoint f mf zc0 zc total = z14 where 360 fixpoint f mf zc0 zc total = z14 where
379 chain = ZChain.chain zc 361 chain = ZChain.chain zc
380 sp1 = sp0 f mf zc0 zc total 362 sp1 = sp0 f mf zc0 zc total
419 -- ZChain contradicts ¬ Maximal 401 -- ZChain contradicts ¬ Maximal
420 -- 402 --
421 -- ZChain forces fix point on any ≤-monotonic function (fixpoint) 403 -- ZChain forces fix point on any ≤-monotonic function (fixpoint)
422 -- ¬ Maximal create cf which is a <-monotonic function by axiom of choice. This contradicts fix point of ZChain 404 -- ¬ Maximal create cf which is a <-monotonic function by axiom of choice. This contradicts fix point of ZChain
423 -- 405 --
424 z04 : (nmx : ¬ Maximal A ) → (zc0 : ZChain1 A (cf nmx) as0 (& A)) (zc : ZChain A (cf nmx) as0 zc0 (& A)) → IsTotalOrderSet (ZChain.chain zc) → ⊥ 406 z04 : (nmx : ¬ Maximal A ) → (zc0 : (x : Ordinal) → ZChain1 A (cf nmx) as0 x) (zc : ZChain A (cf nmx) as0 zc0 (& A)) → IsTotalOrderSet (ZChain.chain zc) → ⊥
425 z04 nmx zc0 zc total = <-irr0 {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) (proj1 (is-cf nmx (SUP.A∋maximal sp1 )))) 407 z04 nmx zc0 zc total = <-irr0 {* (cf nmx c)} {* c} (subst (λ k → odef A k ) (sym &iso) (proj1 (is-cf nmx (SUP.A∋maximal sp1 ))))
426 (subst (λ k → odef A (& k)) (sym *iso) (SUP.A∋maximal sp1) ) 408 (subst (λ k → odef A (& k)) (sym *iso) (SUP.A∋maximal sp1) )
427 (case1 ( cong (*)( fixpoint (cf nmx) (cf-is-≤-monotonic nmx ) zc0 zc total ))) -- x ≡ f x ̄ 409 (case1 ( cong (*)( fixpoint (cf nmx) (cf-is-≤-monotonic nmx ) zc0 zc total ))) -- x ≡ f x ̄
428 (proj1 (cf-is-<-monotonic nmx c (SUP.A∋maximal sp1 ))) where -- x < f x 410 (proj1 (cf-is-<-monotonic nmx c (SUP.A∋maximal sp1 ))) where -- x < f x
429 sp1 : SUP A (ZChain.chain zc) 411 sp1 : SUP A (ZChain.chain zc)
442 px = Oprev.oprev op 424 px = Oprev.oprev op
443 px<x : px o< x 425 px<x : px o< x
444 px<x = subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc 426 px<x = subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc
445 sc : ZChain1 A f ay px 427 sc : ZChain1 A f ay px
446 sc = prev px px<x 428 sc = prev px px<x
447 no-ext : ZChain1 A f ay x
448 no-ext = record { chain = s01 ; chain-mono = ? ; chain-uniq = s02 } where
449 s01 : Ordinal → HOD
450 s01 z with trio< z x
451 ... | tri< a ¬b ¬c = chain (prev z a ) z
452 ... | tri≈ ¬a b ¬c = chain (prev px px<x ) px
453 ... | tri> ¬a ¬b c = chain (prev px px<x ) px
454 s02 : Chain-uniq A f ay x s01
455 s02 with trio< x x
456 ... | tri< a ¬b ¬c = ?
457 ... | tri≈ ¬a refl ¬c = ?
458 ... | tri> ¬a ¬b c = ?
459 sc4 : ZChain1 A f ay x 429 sc4 : ZChain1 A f ay x
460 sc4 with ODC.∋-p O A (* x) 430 sc4 with ODC.∋-p O A (* x)
461 ... | no noax = {!!} 431 ... | no noax = record { chain = ? ; chain-uniq = ? }
462 ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain1.chain sc x) ax f ) 432 ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain1.chain sc ) ax f )
463 ... | case1 pr = {!!} 433 ... | case1 pr = {!!}
464 ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain1.chain sc x) ax ) 434 ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain1.chain sc ) ax )
465 ... | case1 is-sup = {!!} where 435 ... | case1 is-sup = {!!} where
466 -- A∋sc -- x is a sup of zc 436 -- A∋sc -- x is a sup of zc
467 sup0 : SUP A (ZChain1.chain sc x ) 437 sup0 : SUP A (ZChain1.chain sc )
468 sup0 = record { sup = * x ; A∋maximal = ax ; x<sup = x21 } where 438 sup0 = record { sup = * x ; A∋maximal = ax ; x<sup = x21 } where
469 x21 : {y : HOD} → (ZChain1.chain sc x) ∋ y → (y ≡ * x) ∨ (y < * x) 439 x21 : {y : HOD} → (ZChain1.chain sc ) ∋ y → (y ≡ * x) ∨ (y < * x)
470 x21 {y} zy with IsSup.x<sup is-sup zy 440 x21 {y} zy with IsSup.x<sup is-sup zy
471 ... | case1 y=x = case1 (subst₂ (λ j k → j ≡ * k ) *iso &iso ( cong (*) y=x) ) 441 ... | case1 y=x = case1 (subst₂ (λ j k → j ≡ * k ) *iso &iso ( cong (*) y=x) )
472 ... | case2 y<x = case2 (subst₂ (λ j k → j < * k ) *iso &iso y<x ) 442 ... | case2 y<x = case2 (subst₂ (λ j k → j < * k ) *iso &iso y<x )
473 sp : HOD 443 sp : HOD
474 sp = SUP.sup sup0 444 sp = SUP.sup sup0
475 schain : HOD 445 schain : HOD
476 schain = record { od = record { def = λ x → odef (ZChain1.chain sc x) x ∨ (FClosure A f (& sp) x) } ; odmax = & A ; <odmax = λ {y} sy → {!!} } 446 schain = record { od = record { def = λ x → odef A x ∧ ( odef (ZChain1.chain sc ) x ∨ (FClosure A f (& sp) x)) }
447 ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy }
477 ... | case2 ¬x=sup = {!!} 448 ... | case2 ¬x=sup = {!!}
478 ... | no ¬ox = ? where 449 ... | no ¬ox = ? where
450 supf : (z : Ordinal) → z o< x → HOD
451 supf = ?
479 sc5 : HOD 452 sc5 : HOD
480 sc5 = record { od = record { def = λ z → odef A z ∧ (UChain ? x z ∨ FClosure A f y z)} ; odmax = & A ; <odmax = λ {y} sy → {!!} } 453 sc5 = record { od = record { def = λ z → odef A z ∧ (UChain x supf z ∨ FClosure A f y z)} ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy }
481 454
482 ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) → (zc0 : ZChain1 A f ay (& A)) 455 ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) → (zc0 : (x : Ordinal) → ZChain1 A f ay x)
483 → ((z : Ordinal) → z o< x → ZChain A f ay zc0 z) → ZChain A f ay zc0 x 456 → ((z : Ordinal) → z o< x → ZChain A f ay zc0 z) → ZChain A f ay zc0 x
484 ind f mf {y} ay x zc0 prev with Oprev-p x 457 ind f mf {y} ay x zc0 prev with Oprev-p x
485 ... | yes op = zc4 where 458 ... | yes op = zc4 where
486 -- 459 --
487 -- we have previous ordinal to use induction 460 -- we have previous ordinal to use induction
488 -- 461 --
489 px = Oprev.oprev op 462 px = Oprev.oprev op
490 supf : Ordinal → HOD 463 supf : Ordinal → HOD
491 supf = ZChain1.chain zc0 464 supf x = ZChain1.chain (zc0 x)
492 zc : ZChain A f ay zc0 (Oprev.oprev op) 465 zc : ZChain A f ay zc0 (Oprev.oprev op)
493 zc = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc ) 466 zc = prev px (subst (λ k → px o< k) (Oprev.oprev=x op) <-osuc )
494 zc-b<x : (b : Ordinal ) → b o< x → b o< osuc px 467 zc-b<x : (b : Ordinal ) → b o< x → b o< osuc px
495 zc-b<x b lt = subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) lt 468 zc-b<x b lt = subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) lt
496 px<x : px o< x 469 px<x : px o< x
654 ... | case2 b=sup = ⊥-elim ( ¬x=sup record { 627 ... | case2 b=sup = ⊥-elim ( ¬x=sup record {
655 x<sup = λ {y} zy → subst (λ k → (y ≡ k) ∨ (y << k)) (trans b=x (sym &iso)) (IsSup.x<sup b=sup zy) } ) 628 x<sup = λ {y} zy → subst (λ k → (y ≡ k) ∨ (y << k)) (trans b=x (sym &iso)) (IsSup.x<sup b=sup zy) } )
656 ... | no ¬ox = record { chain⊆A = {!!} ; f-next = {!!} ; f-total = ? 629 ... | no ¬ox = record { chain⊆A = {!!} ; f-next = {!!} ; f-total = ?
657 ; initial = {!!} ; chain∋init = {!!} ; is-max = {!!} } where --- limit ordinal case 630 ; initial = {!!} ; chain∋init = {!!} ; is-max = {!!} } where --- limit ordinal case
658 supf : Ordinal → HOD 631 supf : Ordinal → HOD
659 supf = ZChain1.chain zc0 632 supf x = ZChain1.chain (zc0 x)
660 uzc : {z : Ordinal} → (u : UChain supf x z) → ZChain A f ay zc0 (UChain.u u) 633 uzc : {z : Ordinal} → (u : UChain x ? z) → ZChain A f ay zc0 (UChain.u u)
661 uzc {z} u = prev (UChain.u u) (UChain.u<x u) 634 uzc {z} u = prev (UChain.u u) (UChain.u<x u)
662 Uz : HOD 635 Uz : HOD
663 Uz = record { od = record { def = λ z → odef A z ∧ ( UChain supf z x ∨ FClosure A f y z ) } ; odmax = & A ; <odmax = ? } 636 Uz = record { od = record { def = λ z → odef A z ∧ ( UChain z ? x ∨ FClosure A f y z ) } ; odmax = & A ; <odmax = ? }
664 u-next : {z : Ordinal} → odef Uz z → odef Uz (f z) 637 u-next : {z : Ordinal} → odef Uz z → odef Uz (f z)
665 u-next {z} = ? 638 u-next {z} = ?
666 -- (case1 u) = case1 record { u = UChain.u u ; u<x = UChain.u<x u ; chain∋z = ZChain.f-next ( uzc u ) (UChain.chain∋z u) } 639 -- (case1 u) = case1 record { u = UChain.u u ; u<x = UChain.u<x u ; chain∋z = ZChain.f-next ( uzc u ) (UChain.chain∋z u) }
667 -- u-next {z} (case2 u) = case2 ( fsuc _ u ) 640 -- u-next {z} (case2 u) = case2 ( fsuc _ u )
668 u-initial : {z : Ordinal} → odef Uz z → * y ≤ * z 641 u-initial : {z : Ordinal} → odef Uz z → * y ≤ * z
671 -- u-initial {z} (case2 u) = s≤fc _ f mf u 644 -- u-initial {z} (case2 u) = s≤fc _ f mf u
672 u-chain∋init : odef Uz y 645 u-chain∋init : odef Uz y
673 u-chain∋init = ? -- case2 ( init ay ) 646 u-chain∋init = ? -- case2 ( init ay )
674 supf0 : Ordinal → HOD 647 supf0 : Ordinal → HOD
675 supf0 z with trio< z x 648 supf0 z with trio< z x
676 ... | tri< a ¬b ¬c = ZChain1.chain zc0 z 649 ... | tri< a ¬b ¬c = ZChain1.chain (zc0 z)
677 ... | tri≈ ¬a b ¬c = Uz 650 ... | tri≈ ¬a b ¬c = Uz
678 ... | tri> ¬a ¬b c = Uz 651 ... | tri> ¬a ¬b c = Uz
679 u-mono : {z : Ordinal} {w : Ordinal} → z o≤ w → w o≤ x → supf0 z ⊆' supf0 w 652 u-mono : {z : Ordinal} {w : Ordinal} → z o≤ w → w o≤ x → supf0 z ⊆' supf0 w
680 u-mono {z} {w} z≤w w≤x {i} with trio< z x | trio< w x 653 u-mono {z} {w} z≤w w≤x {i} with trio< z x | trio< w x
681 ... | s | t = ? 654 ... | s | t = ?
683 seq : Uz ≡ supf0 x 656 seq : Uz ≡ supf0 x
684 seq with trio< x x 657 seq with trio< x x
685 ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl ) 658 ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl )
686 ... | tri≈ ¬a b ¬c = refl 659 ... | tri≈ ¬a b ¬c = refl
687 ... | tri> ¬a ¬b c = refl 660 ... | tri> ¬a ¬b c = refl
688 seq<x : {b : Ordinal } → (b<x : b o< x ) → ZChain1.chain zc0 b ≡ supf0 b 661 seq<x : {b : Ordinal } → (b<x : b o< x ) → ZChain1.chain (zc0 b) ≡ supf0 b
689 seq<x {b} b<x with trio< b x 662 seq<x {b} b<x with trio< b x
690 ... | tri< a ¬b ¬c = cong (λ k → ZChain1.chain zc0 b) o<-irr -- b<x ≡ a 663 ... | tri< a ¬b ¬c = cong (λ k → ZChain1.chain (zc0 b)) o<-irr -- b<x ≡ a
691 ... | tri≈ ¬a b₁ ¬c = ⊥-elim (¬a b<x ) 664 ... | tri≈ ¬a b₁ ¬c = ⊥-elim (¬a b<x )
692 ... | tri> ¬a ¬b c = ⊥-elim (¬a b<x ) 665 ... | tri> ¬a ¬b c = ⊥-elim (¬a b<x )
693 ord≤< : {x y z : Ordinal} → x o< z → z o≤ y → x o< y 666 ord≤< : {x y z : Ordinal} → x o< z → z o≤ y → x o< y
694 ord≤< {x} {y} {z} x<z z≤y with osuc-≡< z≤y 667 ord≤< {x} {y} {z} x<z z≤y with osuc-≡< z≤y
695 ... | case1 z=y = subst (λ k → x o< k ) z=y x<z 668 ... | case1 z=y = subst (λ k → x o< k ) z=y x<z
696 ... | case2 z<y = ordtrans x<z z<y 669 ... | case2 z<y = ordtrans x<z z<y
697 670
698 SZ0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → ZChain1 A f ay (& A) 671 SZ0 : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → (x : Ordinal) → ZChain1 A f ay x
699 SZ0 f mf ay = TransFinite {λ z → ZChain1 A f ay z} (sind f mf ay ) (& A) 672 SZ0 f mf ay x = TransFinite {λ z → ZChain1 A f ay z} (sind f mf ay ) x
700 673
701 SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → ZChain A f ay (SZ0 f mf ay) (& A) 674 SZ : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) → {y : Ordinal} (ay : odef A y) → ZChain A f ay (SZ0 f mf ay) (& A)
702 SZ f mf {y} ay = TransFinite {λ z → ZChain A f ay (SZ0 f mf ay) z } (λ x → ind f mf ay x (SZ0 f mf ay) ) (& A) 675 SZ f mf {y} ay = TransFinite {λ z → ZChain A f ay (SZ0 f mf ay) z } (λ x → ind f mf ay x (SZ0 f mf ay) ) (& A)
703 676
704 zorn00 : Maximal A 677 zorn00 : Maximal A
715 -- if we have no maximal, make ZChain, which contradict SUP condition 688 -- if we have no maximal, make ZChain, which contradict SUP condition
716 nmx : ¬ Maximal A 689 nmx : ¬ Maximal A
717 nmx mx = ∅< {HasMaximal} zc5 ( ≡o∅→=od∅ ¬Maximal ) where 690 nmx mx = ∅< {HasMaximal} zc5 ( ≡o∅→=od∅ ¬Maximal ) where
718 zc5 : odef A (& (Maximal.maximal mx)) ∧ (( y : Ordinal ) → odef A y → ¬ (* (& (Maximal.maximal mx)) < * y)) 691 zc5 : odef A (& (Maximal.maximal mx)) ∧ (( y : Ordinal ) → odef A y → ¬ (* (& (Maximal.maximal mx)) < * y))
719 zc5 = ⟪ Maximal.A∋maximal mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫ 692 zc5 = ⟪ Maximal.A∋maximal mx , (λ y ay mx<y → Maximal.¬maximal<x mx (subst (λ k → odef A k ) (sym &iso) ay) (subst (λ k → k < * y) *iso mx<y) ) ⟫
720 zc0 : ZChain1 A (cf nmx) as0 (& A) 693 zc0 : (x : Ordinal) → ZChain1 A (cf nmx) as0 x
721 zc0 = TransFinite {λ z → ZChain1 A (cf nmx) as0 z} (sind (cf nmx) (cf-is-≤-monotonic nmx) as0) (& A) 694 zc0 x = TransFinite {λ z → ZChain1 A (cf nmx) as0 z} (sind (cf nmx) (cf-is-≤-monotonic nmx) as0) x
722 zorn04 : ZChain A (cf nmx) as0 zc0 (& A) 695 zorn04 : ZChain A (cf nmx) as0 zc0 (& A)
723 zorn04 = SZ (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as ) 696 zorn04 = SZ (cf nmx) (cf-is-≤-monotonic nmx) (subst (λ k → odef A k ) &iso as )
724 total : IsTotalOrderSet (ZChain.chain zorn04) 697 total : IsTotalOrderSet (ZChain.chain zorn04)
725 total {a} {b} = zorn06 where 698 total {a} {b} = zorn06 where
726 zorn06 : odef (ZChain.chain zorn04) (& a) → odef (ZChain.chain zorn04) (& b) → Tri (a < b) (a ≡ b) (b < a) 699 zorn06 : odef (ZChain.chain zorn04) (& a) → odef (ZChain.chain zorn04) (& b) → Tri (a < b) (a ≡ b) (b < a)