Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison ordinal.agda @ 224:afc864169325
recover ε-induction
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 10 Aug 2019 12:31:25 +0900 |
parents | 59771eb07df0 |
children | e06b76e5b682 |
comparison
equal
deleted
inserted
replaced
223:2e1f19c949dc | 224:afc864169325 |
---|---|
27 open Ordinal | 27 open Ordinal |
28 | 28 |
29 _o<_ : {n : Level} ( x y : Ordinal ) → Set n | 29 _o<_ : {n : Level} ( x y : Ordinal ) → Set n |
30 _o<_ x y = (lv x < lv y ) ∨ ( ord x d< ord y ) | 30 _o<_ x y = (lv x < lv y ) ∨ ( ord x d< ord y ) |
31 | 31 |
32 o<-dom : {n : Level} { x y : Ordinal {n}} → x o< y → Ordinal | |
33 o<-dom {n} {x} _ = x | |
34 | |
35 o<-cod : {n : Level} { x y : Ordinal {n}} → x o< y → Ordinal | |
36 o<-cod {n} {_} {y} _ = y | |
37 | |
38 s<refl : {n : Level } {lx : Nat } { x : OrdinalD {n} lx } → x d< OSuc lx x | 32 s<refl : {n : Level } {lx : Nat } { x : OrdinalD {n} lx } → x d< OSuc lx x |
39 s<refl {n} {lv} {Φ lv} = Φ< | 33 s<refl {n} {lv} {Φ lv} = Φ< |
40 s<refl {n} {lv} {OSuc lv x} = s< s<refl | 34 s<refl {n} {lv} {OSuc lv x} = s< s<refl |
41 | 35 |
42 trio<> : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → y d< x → x d< y → ⊥ | 36 trio<> : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → y d< x → x d< y → ⊥ |
64 | 58 |
65 ordinal-cong : {n : Level} {x y : Ordinal {n}} → | 59 ordinal-cong : {n : Level} {x y : Ordinal {n}} → |
66 lv x ≡ lv y → ord x ≅ ord y → x ≡ y | 60 lv x ≡ lv y → ord x ≅ ord y → x ≡ y |
67 ordinal-cong refl refl = refl | 61 ordinal-cong refl refl = refl |
68 | 62 |
69 ordinal-lv : {n : Level} {x y : Ordinal {n}} → x ≡ y → lv x ≡ lv y | |
70 ordinal-lv refl = refl | |
71 | |
72 ordinal-d : {n : Level} {x y : Ordinal {n}} → x ≡ y → ord x ≅ ord y | |
73 ordinal-d refl = refl | |
74 | |
75 ≡→¬d< : {n : Level} → {lv : Nat} → {x : OrdinalD {n} lv } → x d< x → ⊥ | 63 ≡→¬d< : {n : Level} → {lv : Nat} → {x : OrdinalD {n} lv } → x d< x → ⊥ |
76 ≡→¬d< {n} {lx} {OSuc lx y} (s< t) = ≡→¬d< t | 64 ≡→¬d< {n} {lx} {OSuc lx y} (s< t) = ≡→¬d< t |
77 | 65 |
78 trio<≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → x d< y → ⊥ | 66 trio<≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → x d< y → ⊥ |
79 trio<≡ refl = ≡→¬d< | 67 trio<≡ refl = ≡→¬d< |
80 | 68 |
81 trio>≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → y d< x → ⊥ | 69 trio>≡ : {n : Level} → {lx : Nat} {x : OrdinalD {n} lx } { y : OrdinalD lx } → x ≡ y → y d< x → ⊥ |
82 trio>≡ refl = ≡→¬d< | 70 trio>≡ refl = ≡→¬d< |
83 | |
84 triO : {n : Level} → {lx ly : Nat} → OrdinalD {n} lx → OrdinalD {n} ly → Tri (lx < ly) ( lx ≡ ly ) ( lx > ly ) | |
85 triO {n} {lx} {ly} x y = <-cmp lx ly | |
86 | 71 |
87 triOrdd : {n : Level} → {lx : Nat} → Trichotomous _≡_ ( _d<_ {n} {lx} {lx} ) | 72 triOrdd : {n : Level} → {lx : Nat} → Trichotomous _≡_ ( _d<_ {n} {lx} {lx} ) |
88 triOrdd {_} {lv} (Φ lv) (Φ lv) = tri≈ ≡→¬d< refl ≡→¬d< | 73 triOrdd {_} {lv} (Φ lv) (Φ lv) = tri≈ ≡→¬d< refl ≡→¬d< |
89 triOrdd {_} {lv} (Φ lv) (OSuc lv y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) | 74 triOrdd {_} {lv} (Φ lv) (OSuc lv y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< ) |
90 triOrdd {_} {lv} (OSuc lv x) (Φ lv) = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ< | 75 triOrdd {_} {lv} (OSuc lv x) (Φ lv) = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ< |
97 osuc record { lv = lx ; ord = ox } = record { lv = lx ; ord = OSuc lx ox } | 82 osuc record { lv = lx ; ord = ox } = record { lv = lx ; ord = OSuc lx ox } |
98 | 83 |
99 <-osuc : {n : Level} { x : Ordinal {n} } → x o< osuc x | 84 <-osuc : {n : Level} { x : Ordinal {n} } → x o< osuc x |
100 <-osuc {n} {record { lv = lx ; ord = Φ .lx }} = case2 Φ< | 85 <-osuc {n} {record { lv = lx ; ord = Φ .lx }} = case2 Φ< |
101 <-osuc {n} {record { lv = lx ; ord = OSuc .lx ox }} = case2 ( s< s<refl ) | 86 <-osuc {n} {record { lv = lx ; ord = OSuc .lx ox }} = case2 ( s< s<refl ) |
102 | |
103 osuc-lveq : {n : Level} { x : Ordinal {n} } → lv x ≡ lv ( osuc x ) | |
104 osuc-lveq {n} = refl | |
105 | |
106 osucc : {n : Level} {ox oy : Ordinal {n}} → oy o< ox → osuc oy o< osuc ox | |
107 osucc {n} {ox} {oy} (case1 x) = case1 x | |
108 osucc {n} {ox} {oy} (case2 x) with d<→lv x | |
109 ... | refl = case2 (s< x) | |
110 | |
111 case12-⊥ : {n : Level} {x y : Ordinal {suc n}} → lv x < lv y → ord x d< ord y → ⊥ | |
112 case12-⊥ {x} {y} lt1 lt2 with d<→lv lt2 | |
113 ... | refl = nat-≡< refl lt1 | |
114 | |
115 case21-⊥ : {n : Level} {x y : Ordinal {suc n}} → lv x < lv y → ord y d< ord x → ⊥ | |
116 case21-⊥ {x} {y} lt1 lt2 with d<→lv lt2 | |
117 ... | refl = nat-≡< refl lt1 | |
118 | 87 |
119 o<¬≡ : {n : Level } { ox oy : Ordinal {suc n}} → ox ≡ oy → ox o< oy → ⊥ | 88 o<¬≡ : {n : Level } { ox oy : Ordinal {suc n}} → ox ≡ oy → ox o< oy → ⊥ |
120 o<¬≡ {_} {ox} {ox} refl (case1 lt) = =→¬< lt | 89 o<¬≡ {_} {ox} {ox} refl (case1 lt) = =→¬< lt |
121 o<¬≡ {_} {ox} {ox} refl (case2 (s< lt)) = trio<≡ refl lt | 90 o<¬≡ {_} {ox} {ox} refl (case2 (s< lt)) = trio<≡ refl lt |
122 | 91 |
154 osuc-< {n} {x} {x} (case2 x₂) (case2 x₁) | case1 refl = ≡→¬d< x₁ | 123 osuc-< {n} {x} {x} (case2 x₂) (case2 x₁) | case1 refl = ≡→¬d< x₁ |
155 osuc-< {n} {x} {y} y<ox (case1 x₂) | case2 (case1 x₁) = nat-<> x₂ x₁ | 124 osuc-< {n} {x} {y} y<ox (case1 x₂) | case2 (case1 x₁) = nat-<> x₂ x₁ |
156 osuc-< {n} {x} {y} y<ox (case1 x₂) | case2 (case2 x₁) = nat-≡< (sym (d<→lv x₁)) x₂ | 125 osuc-< {n} {x} {y} y<ox (case1 x₂) | case2 (case2 x₁) = nat-≡< (sym (d<→lv x₁)) x₂ |
157 osuc-< {n} {x} {y} y<ox (case2 x<y) | case2 y<x = o<> (case2 x<y) y<x | 126 osuc-< {n} {x} {y} y<ox (case2 x<y) | case2 y<x = o<> (case2 x<y) y<x |
158 | 127 |
159 maxαd : {n : Level} → { lx : Nat } → OrdinalD {n} lx → OrdinalD lx → OrdinalD lx | |
160 maxαd x y with triOrdd x y | |
161 maxαd x y | tri< a ¬b ¬c = y | |
162 maxαd x y | tri≈ ¬a b ¬c = x | |
163 maxαd x y | tri> ¬a ¬b c = x | |
164 | |
165 minαd : {n : Level} → { lx : Nat } → OrdinalD {n} lx → OrdinalD lx → OrdinalD lx | |
166 minαd x y with triOrdd x y | |
167 minαd x y | tri< a ¬b ¬c = x | |
168 minαd x y | tri≈ ¬a b ¬c = y | |
169 minαd x y | tri> ¬a ¬b c = x | |
170 | |
171 _o≤_ : {n : Level} → Ordinal → Ordinal → Set (suc n) | |
172 a o≤ b = (a ≡ b) ∨ ( a o< b ) | |
173 | 128 |
174 ordtrans : {n : Level} {x y z : Ordinal {n} } → x o< y → y o< z → x o< z | 129 ordtrans : {n : Level} {x y z : Ordinal {n} } → x o< y → y o< z → x o< z |
175 ordtrans {n} {x} {y} {z} (case1 x₁) (case1 x₂) = case1 ( <-trans x₁ x₂ ) | 130 ordtrans {n} {x} {y} {z} (case1 x₁) (case1 x₂) = case1 ( <-trans x₁ x₂ ) |
176 ordtrans {n} {x} {y} {z} (case1 x₁) (case2 x₂) with d<→lv x₂ | 131 ordtrans {n} {x} {y} {z} (case1 x₁) (case2 x₂) with d<→lv x₂ |
177 ... | refl = case1 x₁ | 132 ... | refl = case1 x₁ |
206 trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = tri≈ lemma1 refl lemma1 where | 161 trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = tri≈ lemma1 refl lemma1 where |
207 lemma1 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< ord b) | 162 lemma1 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< ord b) |
208 lemma1 (case1 x) = ¬a x | 163 lemma1 (case1 x) = ¬a x |
209 lemma1 (case2 x) = ≡→¬d< x | 164 lemma1 (case2 x) = ≡→¬d< x |
210 | 165 |
211 xo<ab : {n : Level} {oa ob : Ordinal {suc n}} → ( {ox : Ordinal {suc n}} → ox o< oa → ox o< ob ) → oa o< osuc ob | |
212 xo<ab {n} {oa} {ob} a→b with trio< oa ob | |
213 xo<ab {n} {oa} {ob} a→b | tri< a ¬b ¬c = ordtrans a <-osuc | |
214 xo<ab {n} {oa} {ob} a→b | tri≈ ¬a refl ¬c = <-osuc | |
215 xo<ab {n} {oa} {ob} a→b | tri> ¬a ¬b c = ⊥-elim ( o<¬≡ refl (a→b c ) ) | |
216 | |
217 maxα : {n : Level} → Ordinal {suc n} → Ordinal → Ordinal | |
218 maxα x y with trio< x y | |
219 maxα x y | tri< a ¬b ¬c = y | |
220 maxα x y | tri> ¬a ¬b c = x | |
221 maxα x y | tri≈ ¬a refl ¬c = x | |
222 | |
223 minα : {n : Level} → Ordinal {suc n} → Ordinal → Ordinal | |
224 minα {n} x y with trio< {n} x y | |
225 minα x y | tri< a ¬b ¬c = x | |
226 minα x y | tri> ¬a ¬b c = y | |
227 minα x y | tri≈ ¬a refl ¬c = x | |
228 | |
229 min1 : {n : Level} → {x y z : Ordinal {suc n} } → z o< x → z o< y → z o< minα x y | |
230 min1 {n} {x} {y} {z} z<x z<y with trio< {n} x y | |
231 min1 {n} {x} {y} {z} z<x z<y | tri< a ¬b ¬c = z<x | |
232 min1 {n} {x} {y} {z} z<x z<y | tri≈ ¬a refl ¬c = z<x | |
233 min1 {n} {x} {y} {z} z<x z<y | tri> ¬a ¬b c = z<y | |
234 | |
235 -- | |
236 -- max ( osuc x , osuc y ) | |
237 -- | |
238 | |
239 omax : {n : Level} ( x y : Ordinal {suc n} ) → Ordinal {suc n} | |
240 omax {n} x y with trio< x y | |
241 omax {n} x y | tri< a ¬b ¬c = osuc y | |
242 omax {n} x y | tri> ¬a ¬b c = osuc x | |
243 omax {n} x y | tri≈ ¬a refl ¬c = osuc x | |
244 | |
245 omax< : {n : Level} ( x y : Ordinal {suc n} ) → x o< y → osuc y ≡ omax x y | |
246 omax< {n} x y lt with trio< x y | |
247 omax< {n} x y lt | tri< a ¬b ¬c = refl | |
248 omax< {n} x y lt | tri≈ ¬a b ¬c = ⊥-elim (¬a lt ) | |
249 omax< {n} x y lt | tri> ¬a ¬b c = ⊥-elim (¬a lt ) | |
250 | |
251 omax≡ : {n : Level} ( x y : Ordinal {suc n} ) → x ≡ y → osuc y ≡ omax x y | |
252 omax≡ {n} x y eq with trio< x y | |
253 omax≡ {n} x y eq | tri< a ¬b ¬c = ⊥-elim (¬b eq ) | |
254 omax≡ {n} x y eq | tri≈ ¬a refl ¬c = refl | |
255 omax≡ {n} x y eq | tri> ¬a ¬b c = ⊥-elim (¬b eq ) | |
256 | |
257 omax-x : {n : Level} ( x y : Ordinal {suc n} ) → x o< omax x y | |
258 omax-x {n} x y with trio< x y | |
259 omax-x {n} x y | tri< a ¬b ¬c = ordtrans a <-osuc | |
260 omax-x {n} x y | tri> ¬a ¬b c = <-osuc | |
261 omax-x {n} x y | tri≈ ¬a refl ¬c = <-osuc | |
262 | |
263 omax-y : {n : Level} ( x y : Ordinal {suc n} ) → y o< omax x y | |
264 omax-y {n} x y with trio< x y | |
265 omax-y {n} x y | tri< a ¬b ¬c = <-osuc | |
266 omax-y {n} x y | tri> ¬a ¬b c = ordtrans c <-osuc | |
267 omax-y {n} x y | tri≈ ¬a refl ¬c = <-osuc | |
268 | |
269 omxx : {n : Level} ( x : Ordinal {suc n} ) → omax x x ≡ osuc x | |
270 omxx {n} x with trio< x x | |
271 omxx {n} x | tri< a ¬b ¬c = ⊥-elim (¬b refl ) | |
272 omxx {n} x | tri> ¬a ¬b c = ⊥-elim (¬b refl ) | |
273 omxx {n} x | tri≈ ¬a refl ¬c = refl | |
274 | |
275 omxxx : {n : Level} ( x : Ordinal {suc n} ) → omax x (omax x x ) ≡ osuc (osuc x) | |
276 omxxx {n} x = trans ( cong ( λ k → omax x k ) (omxx x )) (sym ( omax< x (osuc x) <-osuc )) | |
277 | 166 |
278 open _∧_ | 167 open _∧_ |
279 | |
280 osuc2 : {n : Level} ( x y : Ordinal {suc n} ) → ( osuc x o< osuc (osuc y )) ⇔ (x o< osuc y) | |
281 proj1 (osuc2 {n} x y) (case1 lt) = case1 lt | |
282 proj1 (osuc2 {n} x y) (case2 (s< lt)) = case2 lt | |
283 proj2 (osuc2 {n} x y) (case1 lt) = case1 lt | |
284 proj2 (osuc2 {n} x y) (case2 lt) with d<→lv lt | |
285 ... | refl = case2 (s< lt) | |
286 | |
287 OrdTrans : {n : Level} → Transitive {suc n} _o≤_ | |
288 OrdTrans (case1 refl) (case1 refl) = case1 refl | |
289 OrdTrans (case1 refl) (case2 lt2) = case2 lt2 | |
290 OrdTrans (case2 lt1) (case1 refl) = case2 lt1 | |
291 OrdTrans (case2 x) (case2 y) = case2 (ordtrans x y) | |
292 | |
293 OrdPreorder : {n : Level} → Preorder (suc n) (suc n) (suc n) | |
294 OrdPreorder {n} = record { Carrier = Ordinal | |
295 ; _≈_ = _≡_ | |
296 ; _∼_ = _o≤_ | |
297 ; isPreorder = record { | |
298 isEquivalence = record { refl = refl ; sym = sym ; trans = trans } | |
299 ; reflexive = case1 | |
300 ; trans = OrdTrans | |
301 } | |
302 } | |
303 | 168 |
304 TransFinite : {n m : Level} → { ψ : Ordinal {suc n} → Set m } | 169 TransFinite : {n m : Level} → { ψ : Ordinal {suc n} → Set m } |
305 → ( ∀ (lx : Nat ) → ( (x : Ordinal {suc n} ) → x o< ordinal lx (Φ lx) → ψ x ) → ψ ( record { lv = lx ; ord = Φ lx } ) ) | 170 → ( ∀ (lx : Nat ) → ( (x : Ordinal {suc n} ) → x o< ordinal lx (Φ lx) → ψ x ) → ψ ( record { lv = lx ; ord = Φ lx } ) ) |
306 → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ( (y : Ordinal {suc n} ) → y o< ordinal lx (OSuc lx x) → ψ y ) → ψ ( record { lv = lx ; ord = OSuc lx x } ) ) | 171 → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ( (y : Ordinal {suc n} ) → y o< ordinal lx (OSuc lx x) → ψ y ) → ψ ( record { lv = lx ; ord = OSuc lx x } ) ) |
307 → ∀ (x : Ordinal) → ψ x | 172 → ∀ (x : Ordinal) → ψ x |
353 → {p : Set l} ( P : { y : Ordinal {n} } → ψ y → ¬ p ) | 218 → {p : Set l} ( P : { y : Ordinal {n} } → ψ y → ¬ p ) |
354 → (exists : ¬ (∀ y → ¬ ( ψ y ) )) | 219 → (exists : ¬ (∀ y → ¬ ( ψ y ) )) |
355 → ¬ p | 220 → ¬ p |
356 TransFiniteExists {n} {m} {l} ψ {p} P = contra-position ( λ p y ψy → P {y} ψy p ) | 221 TransFiniteExists {n} {m} {l} ψ {p} P = contra-position ( λ p y ψy → P {y} ψy p ) |
357 | 222 |
358 open import Ordinals | 223 open import Ordinals |
359 | 224 |
360 C-Ordinal : {n : Level } → Ordinals {suc n} | 225 C-Ordinal : {n : Level} → Ordinals {suc n} |
361 C-Ordinal {n} = record { | 226 C-Ordinal {n} = record { |
362 ord = Ordinal {suc n} | 227 ord = Ordinal {suc n} |
363 ; o∅ = o∅ | 228 ; o∅ = o∅ |
364 ; osuc = osuc | 229 ; osuc = osuc |
365 ; _o<_ = _o<_ | 230 ; _o<_ = _o<_ |
382 ψ (record { lv = lx ; ord = Φ lx }) | 247 ψ (record { lv = lx ; ord = Φ lx }) |
383 caseΦ lx prev = lt (ordinal lx (Φ lx) ) prev | 248 caseΦ lx prev = lt (ordinal lx (Φ lx) ) prev |
384 caseOSuc : (lx : Nat) (x₁ : OrdinalD lx) → ((y : Ordinal) → y o< ordinal lx (OSuc lx x₁) → ψ y) → | 249 caseOSuc : (lx : Nat) (x₁ : OrdinalD lx) → ((y : Ordinal) → y o< ordinal lx (OSuc lx x₁) → ψ y) → |
385 ψ (record { lv = lx ; ord = OSuc lx x₁ }) | 250 ψ (record { lv = lx ; ord = OSuc lx x₁ }) |
386 caseOSuc lx ox prev = lt (ordinal lx (OSuc lx ox)) prev | 251 caseOSuc lx ox prev = lt (ordinal lx (OSuc lx ox)) prev |
252 | |
253 module C-Ordinal-with-choice {n : Level} where | |
254 | |
255 import OD | |
256 -- open inOrdinal C-Ordinal | |
257 open OD (C-Ordinal {n}) | |
258 open OD.OD | |
259 | |
260 -- | |
261 -- another form of regularity | |
262 -- | |
263 ε-induction : {m : Level} { ψ : OD → Set m} | |
264 → ( {x : OD } → ({ y : OD } → x ∋ y → ψ y ) → ψ x ) | |
265 → (x : OD ) → ψ x | |
266 ε-induction {m} {ψ} ind x = subst (λ k → ψ k ) oiso (ε-induction-ord (lv (osuc (od→ord x))) (ord (osuc (od→ord x))) <-osuc) where | |
267 ε-induction-ord : (lx : Nat) ( ox : OrdinalD {suc n} lx ) {ly : Nat} {oy : OrdinalD {suc n} ly } | |
268 → (ly < lx) ∨ (oy d< ox ) → ψ (ord→od (record { lv = ly ; ord = oy } ) ) | |
269 ε-induction-ord lx (OSuc lx ox) {ly} {oy} y<x = | |
270 ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → subst (λ k → ψ k ) oiso (ε-induction-ord lx ox (lemma y lt ))) where | |
271 lemma : (z : OD) → ord→od record { lv = ly ; ord = oy } ∋ z → od→ord z o< record { lv = lx ; ord = ox } | |
272 lemma z lt with osuc-≡< y<x | |
273 lemma z lt | case1 refl = o<-subst (c<→o< lt) refl diso | |
274 lemma z lt | case2 lt1 = ordtrans (o<-subst (c<→o< lt) refl diso) lt1 | |
275 ε-induction-ord (Suc lx) (Φ (Suc lx)) {ly} {oy} (case1 y<sox ) = | |
276 ind {ord→od (record { lv = ly ; ord = oy })} ( λ {y} lt → lemma y lt ) where | |
277 -- | |
278 -- if lv of z if less than x Ok | |
279 -- else lv z = lv x. We can create OSuc of z which is larger than z and less than x in lemma | |
280 -- | |
281 -- lx Suc lx (1) lz(a) <lx by case1 | |
282 -- ly(1) ly(2) (2) lz(b) <lx by case1 | |
283 -- lz(a) lz(b) lz(c) lz(c) <lx by case2 ( ly==lz==lx) | |
284 -- | |
285 lemma0 : { lx ly : Nat } → ly < Suc lx → lx < ly → ⊥ | |
286 lemma0 {Suc lx} {Suc ly} (s≤s lt1) (s≤s lt2) = lemma0 lt1 lt2 | |
287 lemma1 : {ly : Nat} {oy : OrdinalD {suc n} ly} → lv (od→ord (ord→od (record { lv = ly ; ord = oy }))) ≡ ly | |
288 lemma1 {ly} {oy} = let open ≡-Reasoning in begin | |
289 lv (od→ord (ord→od (record { lv = ly ; ord = oy }))) | |
290 ≡⟨ cong ( λ k → lv k ) diso ⟩ | |
291 lv (record { lv = ly ; ord = oy }) | |
292 ≡⟨⟩ | |
293 ly | |
294 ∎ | |
295 lemma : (z : OD) → ord→od record { lv = ly ; ord = oy } ∋ z → ψ z | |
296 lemma z lt with c<→o< {z} {ord→od (record { lv = ly ; ord = oy })} lt | |
297 lemma z lt | case1 lz<ly with <-cmp lx ly | |
298 lemma z lt | case1 lz<ly | tri< a ¬b ¬c = ⊥-elim ( lemma0 y<sox a) -- can't happen | |
299 lemma z lt | case1 lz<ly | tri≈ ¬a refl ¬c = -- ly(1) | |
300 subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → lv (od→ord z) < k ) lemma1 lz<ly ) )) | |
301 lemma z lt | case1 lz<ly | tri> ¬a ¬b c = -- lz(a) | |
302 subst (λ k → ψ k ) oiso (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (<-trans lz<ly (subst (λ k → k < lx ) (sym lemma1) c)))) | |
303 lemma z lt | case2 lz=ly with <-cmp lx ly | |
304 lemma z lt | case2 lz=ly | tri< a ¬b ¬c = ⊥-elim ( lemma0 y<sox a) -- can't happen | |
305 lemma z lt | case2 lz=ly | tri> ¬a ¬b c with d<→lv lz=ly -- lz(b) | |
306 ... | eq = subst (λ k → ψ k ) oiso | |
307 (ε-induction-ord lx (Φ lx) {_} {ord (od→ord z)} (case1 (subst (λ k → k < lx ) (trans (sym lemma1)(sym eq) ) c ))) | |
308 lemma z lt | case2 lz=ly | tri≈ ¬a lx=ly ¬c with d<→lv lz=ly -- lz(c) | |
309 ... | eq = subst (λ k → ψ k ) oiso ( ε-induction-ord lx (dz oz=lx) {lv (od→ord z)} {ord (od→ord z)} (case2 (dz<dz oz=lx) )) where | |
310 oz=lx : lv (od→ord z) ≡ lx | |
311 oz=lx = let open ≡-Reasoning in begin | |
312 lv (od→ord z) | |
313 ≡⟨ eq ⟩ | |
314 lv (od→ord (ord→od (ordinal ly oy))) | |
315 ≡⟨ cong ( λ k → lv k ) diso ⟩ | |
316 lv (ordinal ly oy) | |
317 ≡⟨ sym lx=ly ⟩ | |
318 lx | |
319 ∎ | |
320 dz : lv (od→ord z) ≡ lx → OrdinalD lx | |
321 dz refl = OSuc lx (ord (od→ord z)) | |
322 dz<dz : (z=x : lv (od→ord z) ≡ lx ) → ord (od→ord z) d< dz z=x | |
323 dz<dz refl = s<refl | |
324 | |
325 --- | |
326 --- With assuption of OD is ordered, p ∨ ( ¬ p ) <=> axiom of choice | |
327 --- | |
328 record choiced ( X : OD) : Set (suc (suc n)) where | |
329 field | |
330 a-choice : OD | |
331 is-in : X ∋ a-choice | |
332 | |
333 choice-func' : (X : OD ) → (p∨¬p : { n : Level } → ( p : Set (suc n) ) → p ∨ ( ¬ p )) → ¬ ( X == od∅ ) → choiced X | |
334 choice-func' X p∨¬p not = have_to_find where | |
335 ψ : ( ox : Ordinal {suc n}) → Set (suc (suc n)) | |
336 ψ ox = (( x : Ordinal {suc n}) → x o< ox → ( ¬ def X x )) ∨ choiced X | |
337 lemma-ord : ( ox : Ordinal {suc n} ) → ψ ox | |
338 lemma-ord ox = TransFinite {n} {suc (suc n)} {ψ} caseΦ caseOSuc1 ox where | |
339 ∋-p' : (A x : OD ) → Dec ( A ∋ x ) | |
340 ∋-p' A x with p∨¬p ( A ∋ x ) | |
341 ∋-p' A x | case1 t = yes t | |
342 ∋-p' A x | case2 t = no t | |
343 ∀-imply-or : {n : Level} {A : Ordinal {suc n} → Set (suc n) } {B : Set (suc (suc n)) } | |
344 → ((x : Ordinal {suc n}) → A x ∨ B) → ((x : Ordinal {suc n}) → A x) ∨ B | |
345 ∀-imply-or {n} {A} {B} ∀AB with p∨¬p ((x : Ordinal {suc n}) → A x) | |
346 ∀-imply-or {n} {A} {B} ∀AB | case1 t = case1 t | |
347 ∀-imply-or {n} {A} {B} ∀AB | case2 x = case2 (lemma x) where | |
348 lemma : ¬ ((x : Ordinal {suc n}) → A x) → B | |
349 lemma not with p∨¬p B | |
350 lemma not | case1 b = b | |
351 lemma not | case2 ¬b = ⊥-elim (not (λ x → dont-orb (∀AB x) ¬b )) | |
352 caseΦ : (lx : Nat) → ( (x : Ordinal {suc n} ) → x o< ordinal lx (Φ lx) → ψ x) → ψ (ordinal lx (Φ lx) ) | |
353 caseΦ lx prev with ∋-p' X ( ord→od (ordinal lx (Φ lx) )) | |
354 caseΦ lx prev | yes p = case2 ( record { a-choice = ord→od (ordinal lx (Φ lx)) ; is-in = p } ) | |
355 caseΦ lx prev | no ¬p = lemma where | |
356 lemma1 : (x : Ordinal) → (((Suc (lv x) ≤ lx) ∨ (ord x d< Φ lx) → def X x → ⊥) ∨ choiced X) | |
357 lemma1 x with trio< x (ordinal lx (Φ lx)) | |
358 lemma1 x | tri< a ¬b ¬c with prev (osuc x) (lemma2 a) where | |
359 lemma2 : x o< (ordinal lx (Φ lx)) → osuc x o< ordinal lx (Φ lx) | |
360 lemma2 (case1 lt) = case1 lt | |
361 lemma1 x | tri< a ¬b ¬c | case2 found = case2 found | |
362 lemma1 x | tri< a ¬b ¬c | case1 not_found = case1 ( λ lt df → not_found x <-osuc df ) | |
363 lemma1 x | tri≈ ¬a refl ¬c = case1 ( λ lt → ⊥-elim (o<¬≡ refl lt )) | |
364 lemma1 x | tri> ¬a ¬b c = case1 ( λ lt → ⊥-elim (o<> lt c )) | |
365 lemma : ((x : Ordinal) → (Suc (lv x) ≤ lx) ∨ (ord x d< Φ lx) → def X x → ⊥) ∨ choiced X | |
366 lemma = ∀-imply-or lemma1 | |
367 caseOSuc : (lx : Nat) (x : OrdinalD lx) → ψ ( ordinal lx x ) → ψ ( ordinal lx (OSuc lx x) ) | |
368 caseOSuc lx x prev with ∋-p' X (ord→od record { lv = lx ; ord = x } ) | |
369 caseOSuc lx x prev | yes p = case2 (record { a-choice = ord→od record { lv = lx ; ord = x } ; is-in = p }) | |
370 caseOSuc lx x (case1 not_found) | no ¬p = case1 lemma where | |
371 lemma : (y : Ordinal) → (Suc (lv y) ≤ lx) ∨ (ord y d< OSuc lx x) → def X y → ⊥ | |
372 lemma y lt with trio< y (ordinal lx x ) | |
373 lemma y lt | tri< a ¬b ¬c = not_found y a | |
374 lemma y lt | tri≈ ¬a refl ¬c = subst (λ k → def X k → ⊥ ) diso ¬p | |
375 lemma y lt | tri> ¬a ¬b c with osuc-≡< lt | |
376 lemma y lt | tri> ¬a ¬b c | case1 refl = ⊥-elim ( ¬b refl ) | |
377 lemma y lt | tri> ¬a ¬b c | case2 lt1 = ⊥-elim (o<> c lt1 ) | |
378 caseOSuc lx x (case2 found) | no ¬p = case2 found | |
379 caseOSuc1 : (lx : Nat) (x : OrdinalD lx) → ((y : Ordinal) → y o< ordinal lx (OSuc lx x) → ψ y) → | |
380 ψ (record { lv = lx ; ord = OSuc lx x }) | |
381 caseOSuc1 lx x lt = caseOSuc lx x (lt ( ordinal lx x ) (case2 s<refl)) | |
382 have_to_find : choiced X | |
383 have_to_find with lemma-ord (od→ord X ) | |
384 have_to_find | t = dont-or t ¬¬X∋x where | |
385 ¬¬X∋x : ¬ ((x : Ordinal) → (Suc (lv x) ≤ lv (od→ord X)) ∨ (ord x d< ord (od→ord X)) → def X x → ⊥) | |
386 ¬¬X∋x nn = not record { | |
387 eq→ = λ {x} lt → ⊥-elim (nn x (def→o< lt) lt) | |
388 ; eq← = λ {x} lt → ⊥-elim ( ¬x<0 lt ) | |
389 } | |
390 |