Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison zf-in-agda.html @ 338:bca043423554
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 12 Jul 2020 12:32:42 +0900 |
parents | 197e0b3d39dc |
children | 5e22b23ee3fd |
comparison
equal
deleted
inserted
replaced
337:de2c472bcbcd | 338:bca043423554 |
---|---|
96 <p> | 96 <p> |
97 It has some amount of difficulty and self circulating discussion. | 97 It has some amount of difficulty and self circulating discussion. |
98 <p> | 98 <p> |
99 I'm planning to do it in my old age, but I'm enough age now. | 99 I'm planning to do it in my old age, but I'm enough age now. |
100 <p> | 100 <p> |
101 This is done during from May to September. | 101 if you familier with Agda, you can skip to <a href="#set-theory"> |
102 there | |
103 </a> | |
102 <p> | 104 <p> |
103 | 105 |
104 <hr/> | 106 <hr/> |
105 <h2><a name="content004">Agda and Intuitionistic Logic </a></h2> | 107 <h2><a name="content004">Agda and Intuitionistic Logic </a></h2> |
106 Curry Howard Isomorphism | 108 Curry Howard Isomorphism |
373 Writing some type in a module argument is the same as postulating a type, but | 375 Writing some type in a module argument is the same as postulating a type, but |
374 postulate can be written the middle of a proof. | 376 postulate can be written the middle of a proof. |
375 <p> | 377 <p> |
376 postulate can be constructive. | 378 postulate can be constructive. |
377 <p> | 379 <p> |
378 postulate can be inconsistent, which result everything has a proof. | 380 postulate can be inconsistent, which result everything has a proof. Actualy this assumption |
381 doesnot work for Ordinals, we discuss this later. | |
379 <p> | 382 <p> |
380 | 383 |
381 <hr/> | 384 <hr/> |
382 <h2><a name="content015"> A ∨ B</a></h2> | 385 <h2><a name="content015"> A ∨ B</a></h2> |
383 | 386 |
584 | 587 |
585 <hr/> | 588 <hr/> |
586 <h2><a name="content023">Classical story of ZF Set Theory</a></h2> | 589 <h2><a name="content023">Classical story of ZF Set Theory</a></h2> |
587 | 590 |
588 <p> | 591 <p> |
592 <a name="set-theory"> | |
589 Assuming ZF, constructing a model of ZF is a flow of classical Set Theory, which leads | 593 Assuming ZF, constructing a model of ZF is a flow of classical Set Theory, which leads |
590 a relative consistency proof of the Set Theory. | 594 a relative consistency proof of the Set Theory. |
591 Ordinal number is used in the flow. | 595 Ordinal number is used in the flow. |
592 <p> | 596 <p> |
593 In Agda, first we defines Ordinal numbers (Ordinals), then introduce Ordinal Definable Set (OD). | 597 In Agda, first we defines Ordinal numbers (Ordinals), then introduce Ordinal Definable Set (OD). |
645 → ∀ (x : ord) → ψ x | 649 → ∀ (x : ord) → ψ x |
646 | 650 |
647 </pre> | 651 </pre> |
648 | 652 |
649 <hr/> | 653 <hr/> |
650 <h2><a name="content026">Concrete Ordinals</a></h2> | 654 <h2><a name="content026">Concrete Ordinals or Countable Ordinals</a></h2> |
651 | 655 |
652 <p> | 656 <p> |
653 We can define a list like structure with level, which is a kind of two dimensional infinite array. | 657 We can define a list like structure with level, which is a kind of two dimensional infinite array. |
654 <p> | 658 <p> |
655 | 659 |
740 This operation can be performed within a ZF Set theory. Classical Set Theory assumes | 744 This operation can be performed within a ZF Set theory. Classical Set Theory assumes |
741 ZF, so this kind of thing is allowed. | 745 ZF, so this kind of thing is allowed. |
742 <p> | 746 <p> |
743 But in our case, we have no ZF theory, so we are going to use Ordinals. | 747 But in our case, we have no ZF theory, so we are going to use Ordinals. |
744 <p> | 748 <p> |
749 The idea is to use an ordinal as a pointer to a record which defines a Set. | |
750 If the recored defines a series of Ordinals which is a pointer to the Set. This record looks like a Set. | |
751 <p> | |
745 | 752 |
746 <hr/> | 753 <hr/> |
747 <h2><a name="content032">Ordinal Definable Set</a></h2> | 754 <h2><a name="content032">Ordinal Definable Set</a></h2> |
748 We can define a sbuset of Ordinals using predicates. What is a subset? | 755 We can define a sbuset of Ordinals using predicates. What is a subset? |
749 <p> | 756 <p> |
763 </pre> | 770 </pre> |
764 Ordinals itself is not a set in a ZF Set theory but a class. In OD, | 771 Ordinals itself is not a set in a ZF Set theory but a class. In OD, |
765 <p> | 772 <p> |
766 | 773 |
767 <pre> | 774 <pre> |
768 record { def = λ x → true } | 775 data One : Set n where |
769 | 776 OneObj : One |
770 </pre> | 777 record { def = λ x → One } |
771 means Ordinals itself, so ODs are larger than a notion of ZF Set Theory, | 778 |
772 but we don't care about it. | 779 </pre> |
773 <p> | 780 means it accepets all Ordinals, i.e. this is Ordinals itself, so ODs are larger than ZF Set. |
774 | 781 You can say OD is a class in ZF Set Theory term. |
775 <hr/> | 782 <p> |
776 <h2><a name="content033">∋ in OD</a></h2> | 783 |
777 OD is a predicate on Ordinals and it does not contains OD directly. If we have a mapping | 784 <hr/> |
778 <p> | 785 <h2><a name="content033">OD is not ZF Set</a></h2> |
779 | 786 If we have 1 to 1 mapping between an OD and an Ordinal, OD contains several ODs and OD looks like |
780 <pre> | 787 a Set. The idea is to use an ordinal as a pointer to OD. |
781 od→ord : OD → Ordinal | 788 Unfortunately this scheme does not work well. As we saw OD includes all Ordinals, which is a maximum of OD, but Ordinals has no maximum at all. So we have a contradction like |
782 | 789 <p> |
783 </pre> | 790 |
784 we may check an OD is an element of the OD using def. | 791 <pre> |
792 ¬OD-order : ( od→ord : OD → Ordinal ) | |
793 → ( ord→od : Ordinal → OD ) → ( { x y : OD } → def y ( od→ord x ) → od→ord x o< od→ord y) → ⊥ | |
794 ¬OD-order od→ord ord→od c<→o< = ? | |
795 | |
796 </pre> | |
797 Actualy we can prove this contrdction, so we need some restrctions on OD. | |
798 <p> | |
799 This is a kind of Russel paradox, that is if OD contains everything, what happens if it contains itself. | |
800 <p> | |
801 | |
802 <hr/> | |
803 <h2><a name="content034"> HOD : Hereditarily Ordinal Definable</a></h2> | |
804 What we need is a bounded OD, the containment is limited by an ordinal. | |
805 <p> | |
806 | |
807 <pre> | |
808 record HOD : Set (suc n) where | |
809 field | |
810 od : OD | |
811 odmax : Ordinal | |
812 <odmax : {y : Ordinal} → def od y → y o< odmax | |
813 | |
814 </pre> | |
815 In classical Set Theory, HOD stands for Hereditarily Ordinal Definable, which means | |
816 <p> | |
817 | |
818 <pre> | |
819 HOD = { x | TC x ⊆ OD } | |
820 | |
821 </pre> | |
822 TC x is all transitive closure of x, that is elements of x and following all elements of them are all OD. But what is x? In this case, x is an Set which we don't have yet. In our case, HOD is a bounded OD. | |
823 <p> | |
824 | |
825 <hr/> | |
826 <h2><a name="content035">1 to 1 mapping between an HOD and an Ordinal</a></h2> | |
827 HOD is a predicate on Ordinals and the solution is bounded by some ordinal. If we have a mapping | |
828 <p> | |
829 | |
830 <pre> | |
831 od→ord : HOD → Ordinal | |
832 ord→od : Ordinal → HOD | |
833 oiso : {x : HOD } → ord→od ( od→ord x ) ≡ x | |
834 diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x | |
835 | |
836 </pre> | |
837 we can check an HOD is an element of the OD using def. | |
785 <p> | 838 <p> |
786 A ∋ x can be define as follows. | 839 A ∋ x can be define as follows. |
787 <p> | 840 <p> |
788 | 841 |
789 <pre> | 842 <pre> |
790 _∋_ : ( A x : OD ) → Set n | 843 _∋_ : ( A x : HOD ) → Set n |
791 _∋_ A x = def A ( od→ord x ) | 844 _∋_ A x = def (od A) ( od→ord x ) |
792 | 845 |
793 </pre> | 846 </pre> |
794 In ψ : Ordinal → Set, if A is a record { def = λ x → ψ x } , then | 847 In ψ : Ordinal → Set, if A is a record { def = λ x → ψ x } , then |
795 <p> | 848 <p> |
796 | 849 |
797 <pre> | 850 <pre> |
798 A x = def A ( od→ord x ) = ψ (od→ord x) | 851 A x = def A ( od→ord x ) = ψ (od→ord x) |
799 | |
800 </pre> | |
801 | |
802 <hr/> | |
803 <h2><a name="content034">1 to 1 mapping between an OD and an Ordinal</a></h2> | |
804 | |
805 <p> | |
806 | |
807 <pre> | |
808 od→ord : OD → Ordinal | |
809 ord→od : Ordinal → OD | |
810 oiso : {x : OD } → ord→od ( od→ord x ) ≡ x | |
811 diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x | |
812 | 852 |
813 </pre> | 853 </pre> |
814 They say the existing of the mappings can be proved in Classical Set Theory, but we | 854 They say the existing of the mappings can be proved in Classical Set Theory, but we |
815 simply assumes these non constructively. | 855 simply assumes these non constructively. |
816 <p> | 856 <p> |
817 We use postulate, it may contains additional restrictions which are not clear now. It look like the mapping should be a subset of Ordinals, but we don't explicitly | |
818 state it. | |
819 <p> | |
820 <img src="fig/ord-od-mapping.svg"> | 857 <img src="fig/ord-od-mapping.svg"> |
821 | 858 |
822 <p> | 859 <p> |
823 | 860 |
824 <hr/> | 861 <hr/> |
825 <h2><a name="content035">Order preserving in the mapping of OD and Ordinal</a></h2> | 862 <h2><a name="content036">Order preserving in the mapping of OD and Ordinal</a></h2> |
826 Ordinals have the order and OD has a natural order based on inclusion ( def / ∋ ). | 863 Ordinals have the order and HOD has a natural order based on inclusion ( def / ∋ ). |
827 <p> | 864 <p> |
828 | 865 |
829 <pre> | 866 <pre> |
830 def y ( od→ord x ) | 867 def (od y) ( od→ord x ) |
831 | 868 |
832 </pre> | 869 </pre> |
833 An elements of OD should be defined before the OD, that is, an ordinal corresponding an elements | 870 An elements of HOD should be defined before the HOD, that is, an ordinal corresponding an elements |
834 have to be smaller than the corresponding ordinal of the containing OD. | 871 have to be smaller than the corresponding ordinal of the containing OD. |
835 <p> | 872 We also assumes subset is always smaller. This is necessary to make a limit of Power Set. |
836 | 873 <p> |
837 <pre> | 874 |
838 c<→o< : {x y : OD } → def y ( od→ord x ) → od→ord x o< od→ord y | 875 <pre> |
839 | 876 c<→o< : {x y : HOD } → def (od y) ( od→ord x ) → od→ord x o< od→ord y |
840 </pre> | 877 ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → od→ord y o< osuc (od→ord z) |
841 This is also said to be provable in classical Set Theory, but we simply assumes it. | 878 |
842 <p> | 879 </pre> |
843 OD has an order based on the corresponding ordinal, but it may not have corresponding def / ∋relation. This means the reverse order preservation, | 880 If wa assumes reverse order preservation, |
844 <p> | 881 <p> |
845 | 882 |
846 <pre> | 883 <pre> |
847 o<→c< : {n : Level} {x y : Ordinal } → x o< y → def (ord→od y) x | 884 o<→c< : {n : Level} {x y : Ordinal } → x o< y → def (ord→od y) x |
848 | 885 |
849 </pre> | 886 </pre> |
850 is not valid. If we assumes it, ∀ x ∋ ∅ becomes true, which manes all OD becomes Ordinals in | 887 ∀ x ∋ ∅ becomes true, which manes all OD becomes Ordinals in the model. |
851 the model. | |
852 <p> | 888 <p> |
853 <img src="fig/ODandOrdinals.svg"> | 889 <img src="fig/ODandOrdinals.svg"> |
854 | 890 |
855 <p> | 891 <p> |
856 | 892 |
857 <hr/> | 893 <hr/> |
858 <h2><a name="content036">ISO</a></h2> | |
859 It also requires isomorphisms, | |
860 <p> | |
861 | |
862 <pre> | |
863 oiso : {x : OD } → ord→od ( od→ord x ) ≡ x | |
864 diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x | |
865 | |
866 </pre> | |
867 | |
868 <hr/> | |
869 <h2><a name="content037">Various Sets</a></h2> | 894 <h2><a name="content037">Various Sets</a></h2> |
870 | |
871 <p> | |
872 In classical Set Theory, there is a hierarchy call L, which can be defined by a predicate. | 895 In classical Set Theory, there is a hierarchy call L, which can be defined by a predicate. |
873 <p> | 896 <p> |
874 | 897 |
875 <pre> | 898 <pre> |
876 Ordinal / things satisfies axiom of Ordinal / extension of natural number | 899 Ordinal / things satisfies axiom of Ordinal / extension of natural number |
877 V / hierarchical construction of Set from φ | 900 V / hierarchical construction of Set from φ |
878 L / hierarchical predicate definable construction of Set from φ | 901 L / hierarchical predicate definable construction of Set from φ |
902 HOD / Hereditarily Ordinal Definable | |
879 OD / equational formula on Ordinals | 903 OD / equational formula on Ordinals |
880 Agda Set / Type / it also has a level | 904 Agda Set / Type / it also has a level |
881 | 905 |
882 </pre> | 906 </pre> |
883 | 907 |
965 <h2><a name="content041">pair in OD</a></h2> | 989 <h2><a name="content041">pair in OD</a></h2> |
966 OD is an equation on Ordinals, we can simply write axiom of pair in the OD. | 990 OD is an equation on Ordinals, we can simply write axiom of pair in the OD. |
967 <p> | 991 <p> |
968 | 992 |
969 <pre> | 993 <pre> |
970 _,_ : OD → OD → OD | 994 _,_ : HOD → HOD → HOD |
971 x , y = record { def = λ t → (t ≡ od→ord x ) ∨ ( t ≡ od→ord y ) } | 995 x , y = record { od = record { def = λ t → (t ≡ od→ord x ) ∨ ( t ≡ od→ord y ) } ; odmax = ? ; <odmax = ? } |
972 | 996 |
973 </pre> | 997 </pre> |
998 It is easy to find out odmax from odmax of x and y. | |
999 <p> | |
974 ≡ is an equality of λ terms, but please not that this is equality on Ordinals. | 1000 ≡ is an equality of λ terms, but please not that this is equality on Ordinals. |
975 <p> | 1001 <p> |
976 | 1002 |
977 <hr/> | 1003 <hr/> |
978 <h2><a name="content042">Validity of Axiom of Pair</a></h2> | 1004 <h2><a name="content042">Validity of Axiom of Pair</a></h2> |
1047 field | 1073 field |
1048 eq→ : ∀ { x : Ordinal } → def a x → def b x | 1074 eq→ : ∀ { x : Ordinal } → def a x → def b x |
1049 eq← : ∀ { x : Ordinal } → def b x → def a x | 1075 eq← : ∀ { x : Ordinal } → def b x → def a x |
1050 | 1076 |
1051 </pre> | 1077 </pre> |
1052 Actually, (z : OD) → (A ∋ z) ⇔ (B ∋ z) implies A == B. | 1078 Actually, (z : HOD) → (A ∋ z) ⇔ (B ∋ z) implies od A == od B. |
1053 <p> | 1079 <p> |
1054 | 1080 |
1055 <pre> | 1081 <pre> |
1056 extensionality0 : {A B : OD } → ((z : OD) → (A ∋ z) ⇔ (B ∋ z)) → A == B | 1082 extensionality0 : {A B : HOD } → ((z : HOD) → (A ∋ z) ⇔ (B ∋ z)) → od A == od B |
1057 eq→ (extensionality0 {A} {B} eq ) {x} d = ? | 1083 eq→ (extensionality0 {A} {B} eq ) {x} d = ? |
1058 eq← (extensionality0 {A} {B} eq ) {x} d = ? | 1084 eq← (extensionality0 {A} {B} eq ) {x} d = ? |
1059 | 1085 |
1060 </pre> | 1086 </pre> |
1061 ? are def B x and def A x and these are generated from eq : (z : OD) → (A ∋ z) ⇔ (B ∋ z) . | 1087 ? are def B x and def A x and these are generated from eq : (z : OD) → (A ∋ z) ⇔ (B ∋ z) . |
1062 <p> | 1088 <p> |
1063 Actual proof is rather complicated. | 1089 Actual proof is rather complicated. |
1064 <p> | 1090 <p> |
1065 | 1091 |
1066 <pre> | 1092 <pre> |
1067 eq→ (extensionality0 {A} {B} eq ) {x} d = def-iso {A} {B} (sym diso) (proj1 (eq (ord→od x))) d | 1093 eq→ (extensionality0 {A} {B} eq ) {x} d = odef-iso {A} {B} (sym diso) (proj1 (eq (ord→od x))) d |
1068 eq← (extensionality0 {A} {B} eq ) {x} d = def-iso {B} {A} (sym diso) (proj2 (eq (ord→od x))) d | 1094 eq← (extensionality0 {A} {B} eq ) {x} d = odef-iso {B} {A} (sym diso) (proj2 (eq (ord→od x))) d |
1069 | 1095 |
1070 </pre> | 1096 </pre> |
1071 where | 1097 where |
1072 <p> | 1098 <p> |
1073 | 1099 |
1074 <pre> | 1100 <pre> |
1075 def-iso : {A B : OD } {x y : Ordinal } → x ≡ y → (def A y → def B y) → def A x → def B x | 1101 odef-iso : {A B : HOD } {x y : Ordinal } → x ≡ y → (def A (od y) → def (od B) y) → def (od A) x → def (od B) x |
1076 def-iso refl t = t | 1102 odef-iso refl t = t |
1077 | 1103 |
1078 </pre> | 1104 </pre> |
1079 | 1105 |
1080 <hr/> | 1106 <hr/> |
1081 <h2><a name="content044">Validity of Axiom of Extensionality</a></h2> | 1107 <h2><a name="content044">Validity of Axiom of Extensionality</a></h2> |
1082 | 1108 |
1083 <p> | 1109 <p> |
1084 If we can derive (w ∋ A) ⇔ (w ∋ B) from A == B, the axiom becomes valid, but it seems impossible, so we assumes | 1110 If we can derive (w ∋ A) ⇔ (w ∋ B) from od A == od B, the axiom becomes valid, but it seems impossible, so we assumes |
1085 <p> | 1111 <p> |
1086 | 1112 |
1087 <pre> | 1113 <pre> |
1088 ==→o≡ : { x y : OD } → (x == y) → x ≡ y | 1114 ==→o≡ : { x y : HOD } → (od x == od y) → x ≡ y |
1089 | 1115 |
1090 </pre> | 1116 </pre> |
1091 Using this, we have | 1117 Using this, we have |
1092 <p> | 1118 <p> |
1093 | 1119 |
1094 <pre> | 1120 <pre> |
1095 extensionality : {A B w : OD } → ((z : OD ) → (A ∋ z) ⇔ (B ∋ z)) → (w ∋ A) ⇔ (w ∋ B) | 1121 extensionality : {A B w : HOD } → ((z : HOD ) → (A ∋ z) ⇔ (B ∋ z)) → (w ∋ A) ⇔ (w ∋ B) |
1096 proj1 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) ( ==→o≡ (extensionality0 {A} {B} eq) ) d | 1122 proj1 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) ( ==→o≡ (extensionality0 {A} {B} eq) ) d |
1097 proj2 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) (sym ( ==→o≡ (extensionality0 {A} {B} eq) )) d | 1123 proj2 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) (sym ( ==→o≡ (extensionality0 {A} {B} eq) )) d |
1098 | 1124 |
1099 </pre> | 1125 </pre> |
1100 This assumption means we may have an equivalence set on any predicates. | |
1101 <p> | |
1102 | 1126 |
1103 <hr/> | 1127 <hr/> |
1104 <h2><a name="content045">Non constructive assumptions so far</a></h2> | 1128 <h2><a name="content045">Non constructive assumptions so far</a></h2> |
1105 We have correspondence between OD and Ordinals and one directional order preserving. | 1129 |
1106 <p> | 1130 <p> |
1107 We also have equality assumption. | 1131 |
1108 <p> | 1132 <pre> |
1109 | 1133 od→ord : HOD → Ordinal |
1110 <pre> | 1134 ord→od : Ordinal → HOD |
1111 od→ord : OD → Ordinal | 1135 c<→o< : {x y : HOD } → def (od y) ( od→ord x ) → od→ord x o< od→ord y |
1112 ord→od : Ordinal → OD | 1136 ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → od→ord y o< osuc (od→ord z) |
1113 oiso : {x : OD } → ord→od ( od→ord x ) ≡ x | 1137 oiso : {x : HOD } → ord→od ( od→ord x ) ≡ x |
1114 diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x | 1138 diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x |
1115 c<→o< : {x y : OD } → def y ( od→ord x ) → od→ord x o< od→ord y | 1139 ==→o≡ : {x y : HOD } → (od x == od y) → x ≡ y |
1116 ==→o≡ : { x y : OD } → (x == y) → x ≡ y | 1140 sup-o : (A : HOD) → ( ( x : Ordinal ) → def (od A) x → Ordinal ) → Ordinal |
1141 sup-o< : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o< sup-o A ψ | |
1117 | 1142 |
1118 </pre> | 1143 </pre> |
1119 | 1144 |
1120 <hr/> | 1145 <hr/> |
1121 <h2><a name="content046">Axiom which have negation form</a></h2> | 1146 <h2><a name="content046">Axiom which have negation form</a></h2> |
1599 <li><a href="#content021"> Can we do math in this way?</a> | 1624 <li><a href="#content021"> Can we do math in this way?</a> |
1600 <li><a href="#content022"> Things which Agda cannot prove</a> | 1625 <li><a href="#content022"> Things which Agda cannot prove</a> |
1601 <li><a href="#content023"> Classical story of ZF Set Theory</a> | 1626 <li><a href="#content023"> Classical story of ZF Set Theory</a> |
1602 <li><a href="#content024"> Ordinals</a> | 1627 <li><a href="#content024"> Ordinals</a> |
1603 <li><a href="#content025"> Axiom of Ordinals</a> | 1628 <li><a href="#content025"> Axiom of Ordinals</a> |
1604 <li><a href="#content026"> Concrete Ordinals</a> | 1629 <li><a href="#content026"> Concrete Ordinals or Countable Ordinals</a> |
1605 <li><a href="#content027"> Model of Ordinals</a> | 1630 <li><a href="#content027"> Model of Ordinals</a> |
1606 <li><a href="#content028"> Debugging axioms using Model</a> | 1631 <li><a href="#content028"> Debugging axioms using Model</a> |
1607 <li><a href="#content029"> Countable Ordinals can contains uncountable set?</a> | 1632 <li><a href="#content029"> Countable Ordinals can contains uncountable set?</a> |
1608 <li><a href="#content030"> What is Set</a> | 1633 <li><a href="#content030"> What is Set</a> |
1609 <li><a href="#content031"> We don't ask the contents of Set. It can be anything.</a> | 1634 <li><a href="#content031"> We don't ask the contents of Set. It can be anything.</a> |
1610 <li><a href="#content032"> Ordinal Definable Set</a> | 1635 <li><a href="#content032"> Ordinal Definable Set</a> |
1611 <li><a href="#content033"> ∋ in OD</a> | 1636 <li><a href="#content033"> OD is not ZF Set</a> |
1612 <li><a href="#content034"> 1 to 1 mapping between an OD and an Ordinal</a> | 1637 <li><a href="#content034"> HOD : Hereditarily Ordinal Definable</a> |
1613 <li><a href="#content035"> Order preserving in the mapping of OD and Ordinal</a> | 1638 <li><a href="#content035"> 1 to 1 mapping between an HOD and an Ordinal</a> |
1614 <li><a href="#content036"> ISO</a> | 1639 <li><a href="#content036"> Order preserving in the mapping of OD and Ordinal</a> |
1615 <li><a href="#content037"> Various Sets</a> | 1640 <li><a href="#content037"> Various Sets</a> |
1616 <li><a href="#content038"> Fixes on ZF to intuitionistic logic</a> | 1641 <li><a href="#content038"> Fixes on ZF to intuitionistic logic</a> |
1617 <li><a href="#content039"> Pure logical axioms</a> | 1642 <li><a href="#content039"> Pure logical axioms</a> |
1618 <li><a href="#content040"> Axiom of Pair</a> | 1643 <li><a href="#content040"> Axiom of Pair</a> |
1619 <li><a href="#content041"> pair in OD</a> | 1644 <li><a href="#content041"> pair in OD</a> |
1636 <li><a href="#content058"> Filter</a> | 1661 <li><a href="#content058"> Filter</a> |
1637 <li><a href="#content059"> Programming Mathematics</a> | 1662 <li><a href="#content059"> Programming Mathematics</a> |
1638 <li><a href="#content060"> link</a> | 1663 <li><a href="#content060"> link</a> |
1639 </ol> | 1664 </ol> |
1640 | 1665 |
1641 <hr/> Shinji KONO / Sat May 9 16:41:10 2020 | 1666 <hr/> Shinji KONO / Tue Jul 7 15:44:35 2020 |
1642 </body></html> | 1667 </body></html> |