Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison filter.agda @ 382:c3a0fb13e267
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 21 Jul 2020 21:32:58 +0900 |
parents | d2cb5278e46d |
children | 5994f10d9bfd |
comparison
equal
deleted
inserted
replaced
381:d2cb5278e46d | 382:c3a0fb13e267 |
---|---|
357 ... | i1 = ↑app f x (j1 ∷ y ) | 357 ... | i1 = ↑app f x (j1 ∷ y ) |
358 | 358 |
359 _3↑_ : (Nat → Two) → Nat → List Three | 359 _3↑_ : (Nat → Two) → Nat → List Three |
360 f 3↑ x = ↑app f x [] | 360 f 3↑ x = ↑app f x [] |
361 | 361 |
362 listn : Nat → List Nat | 362 3↑22 : (f : Nat → Two) (i j : Nat) → List Three |
363 listn 0 = [] | 363 3↑22 f Zero j = [] |
364 listn (Suc n) = n ∷ listn n | 364 3↑22 f (Suc i) j with f i |
365 | 365 3↑22 f (Suc i) j | i0 = j0 ∷ 3↑22 f i (Suc j) |
366 rev : {A : Set} → List A → List A | 366 3↑22 f (Suc i) j | i1 = j1 ∷ 3↑22 f i (Suc j) |
367 rev {A} x = rev1 x [] where | 367 |
368 rev1 : List A → List A → List A | 368 3↑2 : (Nat → Two) → Nat → List Three |
369 rev1 [] y = y | 369 3↑2 f i = 3↑22 f i 0 |
370 rev1 (h ∷ x) y = rev1 x (h ∷ y) | 370 |
371 | 371 lemma10 : (s t : List Three ) → (s 3⊆ t) → ((j0 ∷ s) 3⊆ (j0 ∷ t)) |
372 Lmap : {A B : Set} → (A → B ) → List A → List B | 372 lemma10 s t eq = eq |
373 Lmap f [] = [] | 373 lemma11 : (s t : List Three ) → (s 3⊆ t) → ((j1 ∷ s) 3⊆ (j1 ∷ t)) |
374 Lmap f (h ∷ t) = f h ∷ Lmap f t | 374 lemma11 s t eq = eq |
375 | 375 lemma12 : (s t : List Three ) → (s 3⊆ t) → ((j2 ∷ s) 3⊆ (j0 ∷ t)) |
376 3↑1 : (Nat → Two) → Nat → List Three | 376 lemma12 s t eq = eq |
377 3↑1 f i with f i | 377 lemma13 : (s t : List Three ) → (s 3⊆ t) → ((j2 ∷ s) 3⊆ (j1 ∷ t)) |
378 ... | i0 = Lmap (λ x → j0) (rev ( listn i )) | 378 lemma13 s t eq = eq |
379 ... | i1 = Lmap (λ x → j1) (rev ( listn i )) | 379 lemma14 : (s t : List Three ) → (s 3⊆ t) → ((j2 ∷ s) 3⊆ (j2 ∷ t)) |
380 | 380 lemma14 s t eq = eq |
381 3↑<1 : {f : Nat → Two} → { x y : Nat } → x ≤ y → (3↑1 f x) 3⊆ (3↑1 f y) | 381 |
382 3↑<1 {f} {x} {y} x<y = lemma (rev ( listn x )) where | 382 3↑<2 : {f : Nat → Two} → { x y : Nat } → x ≤ y → (3↑2 f x) 3⊆ (3↑2 f y) |
383 lemma : (z : List Nat ) → {!!} | 383 3↑<2 {f} {x} {y} x<y = lemma x 0 y x<y (3↑22 f x 0) (3↑22 f y 0) where |
384 lemma = {!!} | 384 lemma : (i j y : Nat) → i ≤ y → (s t : List Three) → s 3⊆ t |
385 lemma Zero j y z≤n [] [] = refl | |
386 lemma Zero j y z≤n [] (x ∷ t) = 3⊆-[] {x ∷ t} | |
387 lemma Zero j y z≤n (x ∷ s) [] = {!!} | |
388 lemma Zero j y z≤n (j0 ∷ s) (j0 ∷ t) = lemma Zero j y z≤n s t | |
389 lemma Zero j y z≤n (j0 ∷ s) (j1 ∷ t) = {!!} | |
390 lemma Zero j y z≤n (j0 ∷ s) (j2 ∷ t) = {!!} | |
391 lemma Zero j y z≤n (j1 ∷ s) (j0 ∷ t) = {!!} | |
392 lemma Zero j y z≤n (j1 ∷ s) (j1 ∷ t) = lemma Zero j y z≤n s t | |
393 lemma Zero j y z≤n (j1 ∷ s) (j2 ∷ t) = {!!} | |
394 lemma Zero j y z≤n (j2 ∷ s) (j0 ∷ t) = lemma Zero j y z≤n s t | |
395 lemma Zero j y z≤n (j2 ∷ s) (j1 ∷ t) = lemma Zero j y z≤n s t | |
396 lemma Zero j y z≤n (j2 ∷ s) (j2 ∷ t) = lemma Zero j y z≤n s t | |
397 lemma (Suc i) j (Suc y) (s≤s i<y) [] t = 3⊆-[] {t} | |
398 lemma (Suc i) j (Suc y) (s≤s i<y) (x ∷ s) [] = {!!} | |
399 lemma (Suc i) j (Suc y) (s≤s i<y) (j0 ∷ s) (j0 ∷ t) = {!!} | |
400 lemma (Suc i) j (Suc y) (s≤s i<y) (j0 ∷ s) (j1 ∷ t) = {!!} | |
401 lemma (Suc i) j (Suc y) (s≤s i<y) (j0 ∷ s) (j2 ∷ t) = {!!} | |
402 lemma (Suc i) j (Suc y) (s≤s i<y) (j1 ∷ s) (x1 ∷ t) = {!!} | |
403 lemma (Suc i) j (Suc y) (s≤s i<y) (j2 ∷ s) (x1 ∷ t) = {!!} | |
404 -- with lemma i j y i<y s t | |
385 | 405 |
386 | 406 |
387 3↑< : {f : Nat → Two} → { x y : Nat } → x ≤ y → (f 3↑ x) 3⊆ (f 3↑ y) | 407 3↑< : {f : Nat → Two} → { x y : Nat } → x ≤ y → (f 3↑ x) 3⊆ (f 3↑ y) |
388 3↑< {f} {x} {y} x<y = {!!} where | 408 3↑< {f} {x} {y} x<y = {!!} where |
389 lemma0 : (i : Nat) → (y : List Three ) → ( ↑app f (Suc i) y ≡ ↑app f i (j0 ∷ y)) ∨ ( ↑app f (Suc i) y ≡ ↑app f i (j1 ∷ y)) | 409 lemma0 : (i : Nat) → (y : List Three ) → ( ↑app f (Suc i) y ≡ ↑app f i (j0 ∷ y)) ∨ ( ↑app f (Suc i) y ≡ ↑app f i (j1 ∷ y)) |