comparison src/zorn.agda @ 811:e09ba00c9b85

nvim-agda bug in zorn.agda
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 16 Aug 2022 14:34:54 +0900
parents ae0f958e648b
children 96e6643c833d
comparison
equal deleted inserted replaced
810:ae0f958e648b 811:e09ba00c9b85
698 -- supf0 px is sup of UnionCF px , supf0 x is sup of UnionCF x 698 -- supf0 px is sup of UnionCF px , supf0 x is sup of UnionCF x
699 699
700 record xSUP : Set n where 700 record xSUP : Set n where
701 field 701 field
702 ax : odef A x 702 ax : odef A x
703 not-sup : IsSup A (UnionCF A f mf ay supf0 x) ax 703 is-sup : IsSup A (UnionCF A f mf ay supf0 x) ax
704 704
705 UnionCF⊆ : {z0 z1 : Ordinal} → (z0≤1 : z0 o≤ z1 ) → (z0≤px : z0 o≤ px ) → (z1≤x : z1 o≤ x ) 705 UnionCF⊆ : {z0 z1 : Ordinal} → (z0≤1 : z0 o≤ z1 ) → (z0≤px : z0 o≤ px ) → (z1≤x : z1 o≤ x )
706 → UnionCF A f mf ay supf0 z0 ⊆' UnionCF A f mf ay supf1 z1 706 → UnionCF A f mf ay supf0 z0 ⊆' UnionCF A f mf ay supf1 z1
707 UnionCF⊆ {z0} {z1} z0≤1 z0≤px z1≤x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ 707 UnionCF⊆ {z0} {z1} z0≤1 z0≤px z1≤x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫
708 UnionCF⊆ {z0} {z1} z0≤1 z0≤px z1≤x ⟪ au , ch-is-sup u1 {w} u1≤x u1-is-sup fc ⟫ = zc60 fc where 708 UnionCF⊆ {z0} {z1} z0≤1 z0≤px z1≤x ⟪ au , ch-is-sup u1 {w} u1≤x u1-is-sup fc ⟫ = zc60 fc where
736 ... | ⟪ ua1 , ch-is-sup u u≤x is-sup fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-is-sup u u≤x is-sup (fsuc _ fc₁) ⟫ 736 ... | ⟪ ua1 , ch-is-sup u u≤x is-sup fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-is-sup u u≤x is-sup (fsuc _ fc₁) ⟫
737 no-extension : ¬ xSUP → ZChain A f mf ay x 737 no-extension : ¬ xSUP → ZChain A f mf ay x
738 no-extension ¬sp=x = record { supf = supf1 ; sup = sup 738 no-extension ¬sp=x = record { supf = supf1 ; sup = sup
739 ; initial = pinit1 ; chain∋init = pcy1 ; sup=u = sup=u ; supf-is-sup = sis ; csupf = csupf 739 ; initial = pinit1 ; chain∋init = pcy1 ; sup=u = sup=u ; supf-is-sup = sis ; csupf = csupf
740 ; chain⊆A = λ lt → proj1 lt ; f-next = pnext1 ; f-total = ptotal1 } where 740 ; chain⊆A = λ lt → proj1 lt ; f-next = pnext1 ; f-total = ptotal1 } where
741 UnionCFR⊆ : {u x : Ordinal} → (a : u o≤ x ) → UnionCF A f mf ay supf1 u ⊆' UnionCF A f mf ay supf0 x 741 UnionCFR⊆ : {z0 z1 : Ordinal} → z0 o≤ z1 → z0 o≤ x → z1 o≤ px → UnionCF A f mf ay supf1 z0 ⊆' UnionCF A f mf ay supf0 z1
742 UnionCFR⊆ {u} u<x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ 742 UnionCFR⊆ {z0} {z1} z0≤1 z0≤x z1≤px ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫
743 UnionCFR⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (init au1 refl) ⟫ = ⟪ au , ch-is-sup u1 {!!} {!!} (init {!!} {!!}) ⟫ 743 UnionCFR⊆ {z0} {z1} z0≤1 z0≤x z1≤px ⟪ au , ch-is-sup u1 {w} u1≤x u1-is-sup fc ⟫ = zc60 fc where
744 UnionCFR⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (fsuc xp fcu1) ⟫ = ? -- with 744 zc60 : {w : Ordinal } → FClosure A f (supf1 u1) w → odef (UnionCF A f mf ay supf0 z1 ) w
745 -- UnionCFR⊆ {u} u<x ⟪ A∋fc _ f mf fcu1 , ch-is-sup u1 u1≤x u1-is-sup fcu1 ⟫ 745 zc60 {w} (init asp refl) with trio< u1 px | inspect supf1 u1
746 -- ... | ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-init (fsuc _ fc) ⟫ 746 ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x z0≤1 )
747 -- ... | ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-is-sup u u≤x is-sup (fsuc _ fc) ⟫ 747 record { fcy<sup = fcy<sup ; order = order ; supu=u = trans (sym eq1) (ChainP.supu=u u1-is-sup) } (init asp refl ) ⟫ where
748 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf0 u1) ∨ (z << supf0 u1 )
749 fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) eq1 ( ChainP.fcy<sup u1-is-sup fc )
750 order : {s : Ordinal} {z2 : Ordinal} → s o< u1 → FClosure A f (supf0 s) z2 →
751 (z2 ≡ supf0 u1) ∨ (z2 << supf0 u1)
752 order {s} {z2} s<u1 fc with trio< s px | inspect supf1 s
753 ... | tri< a ¬b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) eq1 ( ChainP.order u1-is-sup s<u1 (subst (λ k → FClosure A f k z2) (sym eq2) fc ))
754 ... | tri≈ ¬a b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) eq1 ( ChainP.order u1-is-sup s<u1 (subst (λ k → FClosure A f k z2) (sym eq2) fc ))
755 ... | tri> ¬a ¬b px<s | record { eq = eq2 } = ⊥-elim ( o<¬≡ refl (ordtrans px<s (ordtrans s<u1 a) )) -- px o< s < u1 < px
756 ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ A∋fcs _ f mf fc , ch-is-sup u1 (OrdTrans u1≤x z0≤1 )
757 record { fcy<sup = fcy<sup ; order = order ; supu=u = trans (sym eq1) (ChainP.supu=u u1-is-sup) } (init asp refl ) ⟫ where
758 fcy<sup : {z : Ordinal} → FClosure A f y z → (z ≡ supf0 u1) ∨ (z << supf0 u1 )
759 fcy<sup {z} fc = subst ( λ k → (z ≡ k) ∨ (z << k )) eq1 ( ChainP.fcy<sup u1-is-sup fc )
760 order : {s : Ordinal} {z2 : Ordinal} → s o< u1 → FClosure A f (supf0 s) z2 →
761 (z2 ≡ supf0 u1) ∨ (z2 << supf0 u1)
762 order {s} {z2} s<u1 fc with trio< s px | inspect supf1 s
763 ... | tri< a ¬b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) eq1 ( ChainP.order u1-is-sup s<u1 (subst (λ k → FClosure A f k z2) (sym eq2) fc ))
764 ... | tri≈ ¬a b ¬c | record { eq = eq2 } = subst (λ k → (z2 ≡ k) ∨ (z2 << k) ) eq1 ( ChainP.order u1-is-sup s<u1 (subst (λ k → FClosure A f k z2) (sym eq2) fc ))
765 ... | tri> ¬a ¬b px<s | _ = ⊥-elim ( o<¬≡ refl (ordtrans px<s (subst (λ k → s o< k) b s<u1 ) )) -- px o< s < u1 = px
766 ... | tri> ¬a ¬b px<u1 | record { eq = eq1 } with trio< z0 px
767 ... | tri< a ¬b ¬c with osuc-≡< (OrdTrans u1≤x (o<→≤ a) )
768 ... | case1 eq = ⊥-elim ( o<¬≡ (sym eq) px<u1 )
769 ... | case2 lt = ⊥-elim ( o<> lt px<u1 )
770 zc60 (init asp refl) | tri> ¬a ¬b px<u1 | record { eq = eq2} | tri≈ ¬a' b ¬c with osuc-≡< (OrdTrans u1≤x (o≤-refl0 b) )
771 ... | case1 eq = ⊥-elim ( o<¬≡ (sym eq) px<u1 )
772 ... | case2 lt = ⊥-elim ( o<> lt px<u1 )
773 zc60 (init asp refl) | tri> ¬a ¬b px<u1 | record { eq = eq2} | tri> ¬a' ¬b' px<z0 = ⊥-elim ( ¬sp=x zcsup ) where
774 zc30 : x ≡ z0
775 zc30 with osuc-≡< z0≤x
776 ... | case1 eq = sym (eq)
777 ... | case2 z0<x = ⊥-elim (¬p<x<op ⟪ px<z0 , subst (λ k → z0 o< k ) (sym (Oprev.oprev=x op)) z0<x ⟫ )
778 zc31 : x ≡ u1
779 zc31 with trio< x u1
780 ... | tri≈ ¬a b ¬c = b
781 ... | tri> ¬a ¬b c = ⊥-elim ( ¬p<x<op ⟪ px<u1 , subst (λ k → u1 o< k) (sym (Oprev.oprev=x op)) c ⟫ )
782 zc31 | tri< a ¬b ¬c with osuc-≡< (subst (λ k → u1 o≤ k ) (sym zc30) u1≤x ) -- px<u1 u1≤x,
783 ... | case1 u1=x = ⊥-elim ( ¬b (sym u1=x) )
784 ... | case2 u1<x = ⊥-elim ( o<> u1<x a )
785 zc33 : supf1 u1 ≡ u1 -- u1 ≡ supf1 u1 ≡ supf1 x ≡ sp1
786 zc33 = ChainP.supu=u u1-is-sup
787 zc32 : sp1 ≡ x
788 zc32 = begin
789 ? ≡⟨ ? ⟩
790 ? ∎ where open ≡-Reasoning
791 zcsup : xSUP
792 zcsup = record { ax = subst (λ k → odef A k) zc32 asp ; is-sup = record { x<sup = {!!} } }
793 zc60 (fsuc w1 fc) with zc60 fc
794 ... | ⟪ ua1 , ch-init fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-init (fsuc _ fc₁) ⟫
795 ... | ⟪ ua1 , ch-is-sup u u≤x is-sup fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-is-sup u u≤x is-sup (fsuc _ fc₁) ⟫
748 sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf1 z) 796 sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf1 z)
749 sup {z} z≤x with trio< z px 797 sup {z} z≤x with trio< z px
750 ... | tri< a ¬b ¬c = SUP⊆ (UnionCFR⊆ {!!}) ( ZChain.sup zc (o<→≤ a) ) 798 ... | tri< a ¬b ¬c = SUP⊆ (UnionCFR⊆ o≤-refl z≤x (o<→≤ a)) ( ZChain.sup zc (o<→≤ a) )
751 ... | tri≈ ¬a b ¬c = SUP⊆ (UnionCFR⊆ {!!}) ( ZChain.sup zc (subst (λ k → k o≤ px) (sym b) o≤-refl )) 799 ... | tri≈ ¬a b ¬c = SUP⊆ (UnionCFR⊆ o≤-refl z≤x (o≤-refl0 b)) ( ZChain.sup zc (subst (λ k → k o≤ px) (sym b) o≤-refl ))
752 ... | tri> ¬a ¬b c = {!!} 800 ... | tri> ¬a ¬b c = record { sup = SUP.sup sup1 ; as = SUP.as sup1 ; x<sup = {!!} }
753 sup=u : {b : Ordinal} (ab : odef A b) → 801 sup=u : {b : Ordinal} (ab : odef A b) →
754 b o≤ x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b 802 b o≤ x → IsSup A (UnionCF A f mf ay supf1 (osuc b)) ab → supf1 b ≡ b
755 sup=u {b} ab b<x is-sup with trio< b px 803 sup=u {b} ab b≤x is-sup with trio< b px
756 ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) {!!} 804 ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) record { x<sup = {!!} }
757 ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (subst (λ k → k o≤ px) (sym b) o≤-refl ) {!!} 805 ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (subst (λ k → k o≤ px) (sym b) o≤-refl ) record { x<sup = {!!} }
758 ... | tri> ¬a ¬b c = {!!} 806 ... | tri> ¬a ¬b px<b = {!!} where
807 zc30 : x ≡ b
808 zc30 with osuc-≡< b≤x
809 ... | case1 eq = sym (eq)
810 ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ )
759 csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf1 b) (supf1 b) 811 csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay supf1 b) (supf1 b)
760 csupf {b} b≤x with trio< b px 812 csupf {b} b≤x with trio< b px | inspect supf1 b
761 ... | tri< a ¬b ¬c = UnionCF⊆ o≤-refl (o<→≤ a) b≤x ( ZChain.csupf zc (o<→≤ a) ) 813 ... | tri< a ¬b ¬c | _ = UnionCF⊆ o≤-refl (o<→≤ a) b≤x ( ZChain.csupf zc (o<→≤ a) )
762 ... | tri≈ ¬a refl ¬c = UnionCF⊆ o≤-refl o≤-refl b≤x ( ZChain.csupf zc o≤-refl ) 814 ... | tri≈ ¬a refl ¬c | _ = UnionCF⊆ o≤-refl o≤-refl b≤x ( ZChain.csupf zc o≤-refl )
763 ... | tri> ¬a ¬b px<b = ⟪ {!!} , ch-is-sup b o≤-refl {!!} {!!} ⟫ where 815 ... | tri> ¬a ¬b px<b | record { eq = eq1 } =
816 ⟪ SUP.as sup1 , ch-is-sup b o≤-refl zc31 (subst (λ k → FClosure A f k sp1) (sym eq1) (init (SUP.as sup1) refl)) ⟫
817 where
764 -- px< b ≤ x 818 -- px< b ≤ x
765 -- b ≡ x, supf x ≡ sp1 , ¬ x ≡ sp1 819 -- b ≡ x, supf x ≡ sp1 , ¬ x ≡ sp1
766 zc30 : x ≡ b 820 zc30 : x ≡ b
767 zc30 with osuc-≡< b≤x 821 zc30 with osuc-≡< b≤x
768 ... | case1 eq = sym (eq) 822 ... | case1 eq = sym (eq)
769 ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) 823 ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ )
824 zc31 : ChainP A f mf ay supf1 b
825 zc31 = record { fcy<sup = {!!} ; order = {!!} ; supu=u = {!!} }
770 sis : {z : Ordinal} (z≤x : z o≤ x) → supf1 z ≡ & (SUP.sup (sup z≤x)) 826 sis : {z : Ordinal} (z≤x : z o≤ x) → supf1 z ≡ & (SUP.sup (sup z≤x))
771 sis = {!!} 827 sis {z} z≤x = {!!}
772 zc4 : ZChain A f mf ay x 828 zc4 : ZChain A f mf ay x
773 zc4 with ODC.∋-p O A (* x) 829 zc4 with ODC.∋-p O A (* x)
774 ... | no noax = no-extension {!!} -- ¬ A ∋ p, just skip 830 ... | no noax = no-extension {!!} -- ¬ A ∋ p, just skip
775 ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain.chain zc ) ax f ) 831 ... | yes ax with ODC.p∨¬p O ( HasPrev A (ZChain.chain zc ) ax f )
776 -- we have to check adding x preserve is-max ZChain A y f mf x 832 -- we have to check adding x preserve is-max ZChain A y f mf x
789 ... | tri< a ¬b ¬c = ZChain.supf zc z 845 ... | tri< a ¬b ¬c = ZChain.supf zc z
790 ... | tri≈ ¬a b ¬c = x 846 ... | tri≈ ¬a b ¬c = x
791 ... | tri> ¬a ¬b c = x 847 ... | tri> ¬a ¬b c = x
792 csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay psupf1 b) (psupf1 b) 848 csupf : {b : Ordinal} → b o≤ x → odef (UnionCF A f mf ay psupf1 b) (psupf1 b)
793 csupf {b} b≤x with trio< b px | inspect psupf1 b 849 csupf {b} b≤x with trio< b px | inspect psupf1 b
794 ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ ? , ? ⟫ 850 ... | tri< a ¬b ¬c | record { eq = eq1 } = ⟪ {!!} , {!!} ⟫
795 ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ {!!} , {!!} ⟫ 851 ... | tri≈ ¬a b ¬c | record { eq = eq1 } = ⟪ {!!} , {!!} ⟫
796 ... | tri> ¬a ¬b c | record { eq = eq1 } = {!!} where -- b ≡ x, supf x ≡ sp 852 ... | tri> ¬a ¬b c | record { eq = eq1 } = {!!} where -- b ≡ x, supf x ≡ sp
797 zc30 : x ≡ b 853 zc30 : x ≡ b
798 zc30 with trio< x b 854 zc30 with trio< x b
799 ... | tri< a ¬b ¬c = ? 855 ... | tri< a ¬b ¬c = {!!}
800 ... | tri≈ ¬a b ¬c = ? 856 ... | tri≈ ¬a b ¬c = {!!}
801 ... | tri> ¬a ¬b c = ? 857 ... | tri> ¬a ¬b c = {!!}
802 858
803 ... | case2 ¬x=sup = no-extension {!!} -- px is not f y' nor sup of former ZChain from y -- no extention 859 ... | case2 ¬x=sup = no-extension {!!} -- px is not f y' nor sup of former ZChain from y -- no extention
804 860
805 ... | no lim = zc5 where 861 ... | no lim = zc5 where
806 862
880 supfu : {u : Ordinal } → ( a : u o< x ) → (z : Ordinal) → Ordinal 936 supfu : {u : Ordinal } → ( a : u o< x ) → (z : Ordinal) → Ordinal
881 supfu {u} a z = ZChain.supf (pzc (osuc u) (ob<x lim a)) z 937 supfu {u} a z = ZChain.supf (pzc (osuc u) (ob<x lim a)) z
882 UnionCF⊆ : {u : Ordinal} → (a : u o< x ) → UnionCF A f mf ay supf1 u ⊆' UnionCF A f mf ay (supfu a) x 938 UnionCF⊆ : {u : Ordinal} → (a : u o< x ) → UnionCF A f mf ay supf1 u ⊆' UnionCF A f mf ay (supfu a) x
883 UnionCF⊆ {u} u<x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ 939 UnionCF⊆ {u} u<x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫
884 UnionCF⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (init au1 refl) ⟫ = ⟪ au , ch-is-sup u1 {!!} {!!} (init {!!} {!!}) ⟫ 940 UnionCF⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (init au1 refl) ⟫ = ⟪ au , ch-is-sup u1 {!!} {!!} (init {!!} {!!}) ⟫
885 UnionCF⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (fsuc xp fcu1) ⟫ = ? -- with 941 UnionCF⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (fsuc xp fcu1) ⟫ = {!!} -- with
886 -- UnionCF⊆ {u} u<x ⟪ A∋fc _ f mf fcu1 , ch-is-sup u1 u1≤x u1-is-sup fcu1 ⟫ 942 -- UnionCF⊆ {u} u<x ⟪ A∋fc _ f mf fcu1 , ch-is-sup u1 u1≤x u1-is-sup fcu1 ⟫
887 -- ... | ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-init (fsuc _ fc) ⟫ 943 -- ... | ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-init (fsuc _ fc) ⟫
888 -- ... | ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-is-sup u u≤x is-sup (fsuc _ fc) ⟫ 944 -- ... | ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-is-sup u u≤x is-sup (fsuc _ fc) ⟫
889 UnionCF0⊆ : {z : Ordinal} → (a : z o≤ x ) → UnionCF A f mf ay supf1 z ⊆' UnionCF A f mf ay psupf0 x 945 UnionCFR⊆ : {z : Ordinal} → (a : z o≤ x ) → UnionCF A f mf ay supf1 z ⊆' UnionCF A f mf ay psupf0 x
890 UnionCF0⊆ {u} u<x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫ 946 UnionCFR⊆ {u} u<x ⟪ au , ch-init fc ⟫ = ⟪ au , ch-init fc ⟫
891 UnionCF0⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (init au1 refl) ⟫ = ⟪ au , ch-is-sup u1 {!!} {!!} (init {!!} {!!}) ⟫ 947 UnionCFR⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (init au1 refl) ⟫ = ⟪ au , ch-is-sup u1 {!!} {!!} (init {!!} {!!}) ⟫
892 UnionCF0⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (fsuc xp fcu1) ⟫ = ? -- with 948 UnionCFR⊆ {u} u<x ⟪ au , ch-is-sup u1 u1≤x u1-is-sup (fsuc xp fcu1) ⟫ = {!!} -- with
893 -- UnionCF0⊆ {u} u<x ⟪ A∋fc _ f mf fcu1 , ch-is-sup u1 u1≤x u1-is-sup fcu1 ⟫ 949 -- UnionCF0⊆ {u} u<x ⟪ A∋fc _ f mf fcu1 , ch-is-sup u1 u1≤x u1-is-sup fcu1 ⟫
894 -- ... | ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-init (fsuc _ fc) ⟫ 950 -- ... | ⟪ aa , ch-init fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-init (fsuc _ fc) ⟫
895 -- ... | ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-is-sup u u≤x is-sup (fsuc _ fc) ⟫ 951 -- ... | ⟪ aa , ch-is-sup u u≤x is-sup fc ⟫ = ⟪ proj2 ( mf _ aa ) , ch-is-sup u u≤x is-sup (fsuc _ fc) ⟫
896 sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf1 z) 952 sup : {z : Ordinal} → z o≤ x → SUP A (UnionCF A f mf ay supf1 z)
897 sup {z} z≤x with trio< z x 953 sup {z} z≤x with trio< z x
898 ... | tri< a ¬b ¬c = SUP⊆ (UnionCF⊆ a) (ZChain.sup (pzc (osuc z) {!!}) {!!} ) 954 ... | tri< a ¬b ¬c = SUP⊆ (UnionCF⊆ a) (ZChain.sup (pzc (osuc z) {!!}) {!!} )
899 ... | tri≈ ¬a b ¬c = SUP⊆ (UnionCF0⊆ {!!}) usup 955 ... | tri≈ ¬a b ¬c = SUP⊆ (UnionCFR⊆ {!!}) usup
900 ... | tri> ¬a ¬b c = SUP⊆ (UnionCF0⊆ {!!}) usup 956 ... | tri> ¬a ¬b c = SUP⊆ (UnionCFR⊆ {!!}) usup
901 sis : {z : Ordinal} (x≤z : z o≤ x) → supf1 z ≡ & (SUP.sup (sup x≤z)) 957 sis : {z : Ordinal} (x≤z : z o≤ x) → supf1 z ≡ & (SUP.sup (sup x≤z))
902 sis {z} z≤x with trio< z x 958 sis {z} z≤x with trio< z x
903 ... | tri< a ¬b ¬c = {!!} where 959 ... | tri< a ¬b ¬c = {!!} where
904 zc8 = ZChain.supf-is-sup (pzc z a) o≤-refl 960 zc8 = ZChain.supf-is-sup (pzc z a) o≤-refl
905 ... | tri≈ ¬a b ¬c = refl 961 ... | tri≈ ¬a b ¬c = refl