Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison OD.agda @ 323:e228e96965f0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 04 Jul 2020 12:53:40 +0900 |
parents | a9d380378efd |
children | fbabb20f222e |
comparison
equal
deleted
inserted
replaced
322:a9d380378efd | 323:e228e96965f0 |
---|---|
313 data infinite-d : ( x : Ordinal ) → Set n where | 313 data infinite-d : ( x : Ordinal ) → Set n where |
314 iφ : infinite-d o∅ | 314 iφ : infinite-d o∅ |
315 isuc : {x : Ordinal } → infinite-d x → | 315 isuc : {x : Ordinal } → infinite-d x → |
316 infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) )) | 316 infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) )) |
317 | 317 |
318 is-ω : (x : Ordinal) → Dec (infinite-d x ) | |
319 is-ω x = {!!} | |
320 | |
318 infinite : HOD | 321 infinite : HOD |
319 infinite = record { od = record { def = λ x → infinite-d x } ; odmax = next o∅ ; <odmax = lemma } where | 322 infinite = record { od = record { def = λ x → infinite-d x } ; odmax = next o∅ ; <odmax = lemma1 } where |
320 lemma : {y : Ordinal} → infinite-d y → y o< next o∅ | 323 lemma : {y : Ordinal} → Lift (suc n) (infinite-d y → y o< next o∅ ) |
321 lemma {o∅} iφ = proj1 next-limit | 324 lemma {y} = TransFinite {λ x → Lift (suc n) (infinite-d x → x o< next o∅) } ind y where |
322 lemma (isuc {x} i) = lemma1 where -- proj2 next-limit ? ( lemma i ) | 325 ind : (x : Ordinal) → ((z : Ordinal) → z o< x → Lift (suc n) (infinite-d z → z o< (next o∅))) → |
323 lemma1 : od→ord (Union (ord→od x , (ord→od x , ord→od x))) o< next o∅ | 326 Lift (suc n) (infinite-d x → x o< (next o∅)) |
324 lemma1 = {!!} | 327 ind x prev with {!!} |
325 | 328 ... | ttt = {!!} |
326 | 329 lemma1 : {y : Ordinal} → infinite-d y → y o< next o∅ |
330 lemma1 {y} with lemma {y} | |
331 lemma1 {y} | lift p = p | |
327 | 332 |
328 _=h=_ : (x y : HOD) → Set n | 333 _=h=_ : (x y : HOD) → Set n |
329 x =h= y = od x == od y | 334 x =h= y = od x == od y |
330 | 335 |
331 infixr 200 _∈_ | 336 infixr 200 _∈_ |