comparison src/zorn.agda @ 954:e43a5cc72287

IsSUP is now min sup
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 02 Nov 2022 13:53:10 +0900
parents dfb4f7e9c454
children bc27df170a1e
comparison
equal deleted inserted replaced
953:dfb4f7e9c454 954:e43a5cc72287
241 x=fy : x ≡ f y 241 x=fy : x ≡ f y
242 242
243 record IsSup (A B : HOD) {x : Ordinal } (xa : odef A x) : Set n where 243 record IsSup (A B : HOD) {x : Ordinal } (xa : odef A x) : Set n where
244 field 244 field
245 x≤sup : {y : Ordinal} → odef B y → (y ≡ x ) ∨ (y << x ) 245 x≤sup : {y : Ordinal} → odef B y → (y ≡ x ) ∨ (y << x )
246 minsup : { sup1 : Ordinal } → odef A sup1
247 → ( {z : Ordinal } → odef B z → (z ≡ sup1 ) ∨ (z << sup1 )) → x o≤ sup1
246 248
247 record SUP ( A B : HOD ) : Set (Level.suc n) where 249 record SUP ( A B : HOD ) : Set (Level.suc n) where
248 field 250 field
249 sup : HOD 251 sup : HOD
250 as : A ∋ sup 252 as : A ∋ sup
657 m04 : ¬ HasPrev A (UnionCF A f mf ay supf b) b f 659 m04 : ¬ HasPrev A (UnionCF A f mf ay supf b) b f
658 m04 nhp = proj1 is-sup ( record { ax = HasPrev.ax nhp ; y = HasPrev.y nhp ; ay = 660 m04 nhp = proj1 is-sup ( record { ax = HasPrev.ax nhp ; y = HasPrev.y nhp ; ay =
659 chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) ; x=fy = HasPrev.x=fy nhp } ) 661 chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) ; x=fy = HasPrev.x=fy nhp } )
660 m05 : ZChain.supf zc b ≡ b 662 m05 : ZChain.supf zc b ≡ b
661 m05 = ZChain.sup=u zc ab (o<→≤ (z09 ab) ) 663 m05 = ZChain.sup=u zc ab (o<→≤ (z09 ab) )
662 ⟪ record { x≤sup = λ {z} uz → IsSup.x≤sup (proj2 is-sup) (chain-mono1 (o<→≤ b<x) uz) } , m04 ⟫ 664 ⟪ record { x≤sup = λ {z} uz → IsSup.x≤sup (proj2 is-sup) (chain-mono1 (o<→≤ b<x) uz)
665 ; minsup = m07 } , m04 ⟫ where
666 m10 : {s : Ordinal } → (odef A s )
667 → ( {z : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) b) z → (z ≡ s) ∨ (z << s) )
668 → {z : Ordinal} → odef (UnionCF A f mf ay (ZChain.supf zc) x) z → (z ≡ s) ∨ (z << s)
669 m10 = ?
670 m07 : {sup1 : Ordinal} → odef A sup1 → ({z : Ordinal} →
671 odef (UnionCF A f mf ay (ZChain.supf zc) b) z → (z ≡ sup1) ∨ (z << sup1)) → b o≤ sup1
672 m07 {s} as min = IsSup.minsup (proj2 is-sup) as (m10 as min)
663 m08 : {z : Ordinal} → (fcz : FClosure A f y z ) → z <= ZChain.supf zc b 673 m08 : {z : Ordinal} → (fcz : FClosure A f y z ) → z <= ZChain.supf zc b
664 m08 {z} fcz = ZChain.fcy<sup zc (o<→≤ b<A) fcz 674 m08 {z} fcz = ZChain.fcy<sup zc (o<→≤ b<A) fcz
665 m09 : {s z1 : Ordinal} → ZChain.supf zc s o< ZChain.supf zc b 675 m09 : {s z1 : Ordinal} → ZChain.supf zc s o< ZChain.supf zc b
666 → FClosure A f (ZChain.supf zc s) z1 → z1 <= ZChain.supf zc b 676 → FClosure A f (ZChain.supf zc s) z1 → z1 <= ZChain.supf zc b
667 m09 {s} {z} s<b fcz = order b<A s<b fcz 677 m09 {s} {z} s<b fcz = order b<A s<b fcz
690 m04 nhp = proj1 is-sup ( record { ax = HasPrev.ax nhp ; y = HasPrev.y nhp ; ay = 700 m04 nhp = proj1 is-sup ( record { ax = HasPrev.ax nhp ; y = HasPrev.y nhp ; ay =
691 chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp) 701 chain-mono1 (o<→≤ b<x) (HasPrev.ay nhp)
692 ; x=fy = HasPrev.x=fy nhp } ) 702 ; x=fy = HasPrev.x=fy nhp } )
693 m05 : ZChain.supf zc b ≡ b 703 m05 : ZChain.supf zc b ≡ b
694 m05 = ZChain.sup=u zc ab (o<→≤ m09) 704 m05 = ZChain.sup=u zc ab (o<→≤ m09)
695 ⟪ record { x≤sup = λ lt → IsSup.x≤sup (proj2 is-sup) (chain-mono1 (o<→≤ b<x) lt )} , m04 ⟫ -- ZChain on x 705 ⟪ record { x≤sup = λ lt → IsSup.x≤sup (proj2 is-sup) (chain-mono1 (o<→≤ b<x) lt )
706 ; minsup = ? } , m04 ⟫ -- ZChain on x
696 m06 : ChainP A f mf ay supf b 707 m06 : ChainP A f mf ay supf b
697 m06 = record { fcy<sup = m07 ; order = m08 ; supu=u = m05 } 708 m06 = record { fcy<sup = m07 ; order = m08 ; supu=u = m05 }
698 709
699 uchain : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → HOD 710 uchain : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → HOD
700 uchain f mf {y} ay = record { od = record { def = λ x → FClosure A f y x } ; odmax = & A ; <odmax = 711 uchain f mf {y} ay = record { od = record { def = λ x → FClosure A f y x } ; odmax = & A ; <odmax =
723 -- 734 --
724 735
725 ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) 736 ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal)
726 → ((z : Ordinal) → z o< x → ZChain A f mf ay z) → ZChain A f mf ay x 737 → ((z : Ordinal) → z o< x → ZChain A f mf ay z) → ZChain A f mf ay x
727 ind f mf {y} ay x prev with Oprev-p x 738 ind f mf {y} ay x prev with Oprev-p x
728 ... | yes op = zc4 where 739 ... | yes op = zc41 where
729 -- 740 --
730 -- we have previous ordinal to use induction 741 -- we have previous ordinal to use induction
731 -- 742 --
732 px = Oprev.oprev op 743 px = Oprev.oprev op
733 zc : ZChain A f mf ay (Oprev.oprev op) 744 zc : ZChain A f mf ay (Oprev.oprev op)
753 ... | tri≈ ¬a b ¬c = case1 (o≤-refl0 b) 764 ... | tri≈ ¬a b ¬c = case1 (o≤-refl0 b)
754 ... | tri> ¬a ¬b px<b with osuc-≡< b≤x 765 ... | tri> ¬a ¬b px<b with osuc-≡< b≤x
755 ... | case1 eq = case2 eq 766 ... | case1 eq = case2 eq
756 ... | case2 b<x = ⊥-elim ( ¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) 767 ... | case2 b<x = ⊥-elim ( ¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ )
757 768
758 zc41 : supf0 px o< x → ZChain A f mf ay x 769 --
759 zc41 sfpx<x = record { supf = supf1 ; sup=u = ? ; asupf = ? ; supf-mono = supf1-mono ; supf-< = ? 770 -- find the next value of supf
771 --
772
773 pchainpx : HOD
774 pchainpx = record { od = record { def = λ z → (odef A z ∧ UChain A f mf ay supf0 px z )
775 ∨ FClosure A f (supf0 px) z } ; odmax = & A ; <odmax = zc00 } where
776 zc00 : {z : Ordinal } → (odef A z ∧ UChain A f mf ay supf0 px z ) ∨ FClosure A f (supf0 px) z → z o< & A
777 zc00 {z} (case1 lt) = z07 lt
778 zc00 {z} (case2 fc) = z09 ( A∋fc (supf0 px) f mf fc )
779
780 zc02 : { a b : Ordinal } → odef A a ∧ UChain A f mf ay supf0 px a → FClosure A f (supf0 px) b → a <= b
781 zc02 {a} {b} ca fb = zc05 fb where
782 zc06 : MinSUP.sup (ZChain.minsup zc o≤-refl) ≡ supf0 px
783 zc06 = trans (sym ( ZChain.supf-is-minsup zc o≤-refl )) refl
784 zc05 : {b : Ordinal } → FClosure A f (supf0 px) b → a <= b
785 zc05 (fsuc b1 fb ) with proj1 ( mf b1 (A∋fc (supf0 px) f mf fb ))
786 ... | case1 eq = subst (λ k → a <= k ) (subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) eq)) (zc05 fb)
787 ... | case2 lt = <-ftrans (zc05 fb) (case2 lt)
788 zc05 (init b1 refl) with MinSUP.x≤sup (ZChain.minsup zc o≤-refl)
789 (subst (λ k → odef A k ∧ UChain A f mf ay supf0 px k) (sym &iso) ca )
790 ... | case1 eq = case1 (subst₂ (λ j k → j ≡ k ) &iso zc06 eq )
791 ... | case2 lt = case2 (subst₂ (λ j k → j < k ) *iso (cong (*) zc06) lt )
792
793 ptotal : IsTotalOrderSet pchainpx
794 ptotal (case1 a) (case1 b) = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso
795 (chain-total A f mf ay supf0 (proj2 a) (proj2 b))
796 ptotal {a0} {b0} (case1 a) (case2 b) with zc02 a b
797 ... | case1 eq = tri≈ (<-irr (case1 (sym eq1))) eq1 (<-irr (case1 eq1)) where
798 eq1 : a0 ≡ b0
799 eq1 = subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) eq )
800 ... | case2 lt = tri< lt1 (λ eq → <-irr (case1 (sym eq)) lt1) (<-irr (case2 lt1)) where
801 lt1 : a0 < b0
802 lt1 = subst₂ (λ j k → j < k ) *iso *iso lt
803 ptotal {b0} {a0} (case2 b) (case1 a) with zc02 a b
804 ... | case1 eq = tri≈ (<-irr (case1 eq1)) (sym eq1) (<-irr (case1 (sym eq1))) where
805 eq1 : a0 ≡ b0
806 eq1 = subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) eq )
807 ... | case2 lt = tri> (<-irr (case2 lt1)) (λ eq → <-irr (case1 eq) lt1) lt1 where
808 lt1 : a0 < b0
809 lt1 = subst₂ (λ j k → j < k ) *iso *iso lt
810 ptotal (case2 a) (case2 b) = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso (fcn-cmp (supf0 px) f mf a b)
811
812 pcha : pchainpx ⊆' A
813 pcha (case1 lt) = proj1 lt
814 pcha (case2 fc) = A∋fc _ f mf fc
815
816 sup1 : MinSUP A pchainpx
817 sup1 = minsupP pchainpx pcha ptotal
818 sp1 = MinSUP.sup sup1
819
820 --
821 -- supf0 px o≤ sp1
822 --
823
824 zc41 : ZChain A f mf ay x
825 zc41 with MinSUP.x≤sup sup1 (case2 (init (ZChain.asupf zc {px}) refl ))
826 zc41 | (case2 sfpx<sp1) = record { supf = supf1 ; sup=u = ? ; asupf = ? ; supf-mono = supf1-mono ; supf-< = ?
760 ; supfmax = ? ; minsup = ? ; supf-is-minsup = ? ; csupf = csupf1 } where 827 ; supfmax = ? ; minsup = ? ; supf-is-minsup = ? ; csupf = csupf1 } where
761 -- supf0 px is included by the chain 828 -- supf0 px is included by the chain of sp1
762 -- ( UnionCF A f mf ay supf0 px ∪ FClosure (supf0 px) ) ≡ UnionCF supf1 x 829 -- ( UnionCF A f mf ay supf0 px ∪ FClosure (supf0 px) ) ≡ UnionCF supf1 x
763 -- supf1 x ≡ sp1, which is not included now 830 -- supf1 x ≡ sp1, which is not included now
764
765 pchainpx : HOD
766 pchainpx = record { od = record { def = λ z → (odef A z ∧ UChain A f mf ay supf0 px z )
767 ∨ FClosure A f (supf0 px) z } ; odmax = & A ; <odmax = zc00 } where
768 zc00 : {z : Ordinal } → (odef A z ∧ UChain A f mf ay supf0 px z ) ∨ FClosure A f (supf0 px) z → z o< & A
769 zc00 {z} (case1 lt) = z07 lt
770 zc00 {z} (case2 fc) = z09 ( A∋fc (supf0 px) f mf fc )
771 zc01 : {z : Ordinal } → (odef A z ∧ UChain A f mf ay supf0 px z ) ∨ FClosure A f (supf0 px) z → odef A z
772 zc01 {z} (case1 lt) = proj1 lt
773 zc01 {z} (case2 fc) = ( A∋fc (supf0 px) f mf fc )
774
775 zc02 : { a b : Ordinal } → odef A a ∧ UChain A f mf ay supf0 px a → FClosure A f (supf0 px) b → a <= b
776 zc02 {a} {b} ca fb = zc05 fb where
777 zc06 : MinSUP.sup (ZChain.minsup zc o≤-refl) ≡ supf0 px
778 zc06 = trans (sym ( ZChain.supf-is-minsup zc o≤-refl )) refl
779 zc05 : {b : Ordinal } → FClosure A f (supf0 px) b → a <= b
780 zc05 (fsuc b1 fb ) with proj1 ( mf b1 (A∋fc (supf0 px) f mf fb ))
781 ... | case1 eq = subst (λ k → a <= k ) (subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) eq)) (zc05 fb)
782 ... | case2 lt = <-ftrans (zc05 fb) (case2 lt)
783 zc05 (init b1 refl) with MinSUP.x≤sup (ZChain.minsup zc o≤-refl)
784 (subst (λ k → odef A k ∧ UChain A f mf ay supf0 px k) (sym &iso) ca )
785 ... | case1 eq = case1 (subst₂ (λ j k → j ≡ k ) &iso zc06 eq )
786 ... | case2 lt = case2 (subst₂ (λ j k → j < k ) *iso (cong (*) zc06) lt )
787
788 ptotal : IsTotalOrderSet pchainpx
789 ptotal (case1 a) (case1 b) = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso
790 (chain-total A f mf ay supf0 (proj2 a) (proj2 b))
791 ptotal {a0} {b0} (case1 a) (case2 b) with zc02 a b
792 ... | case1 eq = tri≈ (<-irr (case1 (sym eq1))) eq1 (<-irr (case1 eq1)) where
793 eq1 : a0 ≡ b0
794 eq1 = subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) eq )
795 ... | case2 lt = tri< lt1 (λ eq → <-irr (case1 (sym eq)) lt1) (<-irr (case2 lt1)) where
796 lt1 : a0 < b0
797 lt1 = subst₂ (λ j k → j < k ) *iso *iso lt
798 ptotal {b0} {a0} (case2 b) (case1 a) with zc02 a b
799 ... | case1 eq = tri≈ (<-irr (case1 eq1)) (sym eq1) (<-irr (case1 (sym eq1))) where
800 eq1 : a0 ≡ b0
801 eq1 = subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) eq )
802 ... | case2 lt = tri> (<-irr (case2 lt1)) (λ eq → <-irr (case1 eq) lt1) lt1 where
803 lt1 : a0 < b0
804 lt1 = subst₂ (λ j k → j < k ) *iso *iso lt
805 ptotal (case2 a) (case2 b) = subst₂ (λ j k → Tri (j < k) (j ≡ k) (k < j)) *iso *iso (fcn-cmp (supf0 px) f mf a b)
806
807 pcha : pchainpx ⊆' A
808 pcha (case1 lt) = proj1 lt
809 pcha (case2 fc) = A∋fc _ f mf fc
810
811 sup1 : MinSUP A pchainpx
812 sup1 = minsupP pchainpx pcha ptotal
813 sp1 = MinSUP.sup sup1
814 831
815 supf1 : Ordinal → Ordinal 832 supf1 : Ordinal → Ordinal
816 supf1 z with trio< z px 833 supf1 z with trio< z px
817 ... | tri< a ¬b ¬c = supf0 z 834 ... | tri< a ¬b ¬c = supf0 z
818 ... | tri≈ ¬a b ¬c = supf0 z 835 ... | tri≈ ¬a b ¬c = supf0 z
941 zc19 = trans (sf1=sf0 o≤-refl) (cong supf0 (sym b)) 958 zc19 = trans (sf1=sf0 o≤-refl) (cong supf0 (sym b))
942 s≤px : s o≤ px 959 s≤px : s o≤ px
943 s≤px = o<→≤ (supf-inject0 supf1-mono ss<spx) 960 s≤px = o<→≤ (supf-inject0 supf1-mono ss<spx)
944 ... | tri> ¬a ¬b c | _ = ⊥-elim ( ¬p<x<op ⟪ c , u≤px ⟫ ) 961 ... | tri> ¬a ¬b c | _ = ⊥-elim ( ¬p<x<op ⟪ c , u≤px ⟫ )
945 zc12 {z} (case2 fc) = zc21 fc where 962 zc12 {z} (case2 fc) = zc21 fc where
963 zc20 : (supf0 px ≡ px ) ∨ ( supf0 px o< px )
964 zc20 = ?
946 zc21 : {z1 : Ordinal } → FClosure A f (supf0 px) z1 → odef (UnionCF A f mf ay supf1 x) z1 965 zc21 : {z1 : Ordinal } → FClosure A f (supf0 px) z1 → odef (UnionCF A f mf ay supf1 x) z1
947 zc21 {z1} (fsuc z2 fc ) with zc21 fc 966 zc21 {z1} (fsuc z2 fc ) with zc21 fc
948 ... | ⟪ ua1 , ch-init fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-init (fsuc _ fc₁) ⟫ 967 ... | ⟪ ua1 , ch-init fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-init (fsuc _ fc₁) ⟫
949 ... | ⟪ ua1 , ch-is-sup u u<x u1-is-sup fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-is-sup u u<x u1-is-sup (fsuc _ fc₁) ⟫ 968 ... | ⟪ ua1 , ch-is-sup u u<x u1-is-sup fc₁ ⟫ = ⟪ proj2 ( mf _ ua1) , ch-is-sup u u<x u1-is-sup (fsuc _ fc₁) ⟫
950 zc21 (init asp refl ) with osuc-≡< ( subst (λ k → supf0 px o< k ) (sym (Oprev.oprev=x op)) sfpx<x ) 969 zc21 (init asp refl ) with zc20
951 ... | case1 sfpx=px = ⟪ asp , ch-is-sup px zc18 970 ... | case1 sfpx=px = ⟪ asp , ch-is-sup px zc18
952 record {fcy<sup = zc13 ; order = zc17 ; supu=u = zc15 } zc14 ⟫ where 971 record {fcy<sup = zc13 ; order = zc17 ; supu=u = zc15 } zc14 ⟫ where
953 zc15 : supf1 px ≡ px 972 zc15 : supf1 px ≡ px
954 zc15 = trans (sf1=sf0 o≤-refl ) (sfpx=px) 973 zc15 = trans (sf1=sf0 o≤-refl ) (sfpx=px)
955 zc18 : supf1 px o< supf1 x 974 zc18 : supf1 px o< supf1 x
974 csupf17 (init as refl ) = ZChain.csupf zc sf<px 993 csupf17 (init as refl ) = ZChain.csupf zc sf<px
975 csupf17 (fsuc x fc) = ZChain.f-next zc (csupf17 fc) 994 csupf17 (fsuc x fc) = ZChain.f-next zc (csupf17 fc)
976 995
977 ... | case2 sfp<px with ZChain.csupf zc sfp<px -- odef (UnionCF A f mf ay supf0 px) (supf0 px) 996 ... | case2 sfp<px with ZChain.csupf zc sfp<px -- odef (UnionCF A f mf ay supf0 px) (supf0 px)
978 ... | ⟪ ua1 , ch-init fc₁ ⟫ = ⟪ ua1 , ch-init fc₁ ⟫ 997 ... | ⟪ ua1 , ch-init fc₁ ⟫ = ⟪ ua1 , ch-init fc₁ ⟫
979 ... | ⟪ ua1 , ch-is-sup u u<x is-sup fc₁ ⟫ = ⟪ ua1 , ch-is-sup u ? 998 ... | ⟪ ua1 , ch-is-sup u u<x is-sup fc₁ ⟫ = ⟪ ua1 , ch-is-sup u zc18
980 record { fcy<sup = z10 ; order = z11 ; supu=u = z12 } (fcpu fc₁ ? ) ⟫ where 999 record { fcy<sup = z10 ; order = z11 ; supu=u = z12 } (fcpu fc₁ ? ) ⟫ where
981 z10 : {z : Ordinal } → FClosure A f y z → (z ≡ supf1 u) ∨ ( z << supf1 u ) 1000 z10 : {z : Ordinal } → FClosure A f y z → (z ≡ supf1 u) ∨ ( z << supf1 u )
982 z10 {z} fc = subst (λ k → (z ≡ k) ∨ ( z << k )) (sym (sf1=sf0 ? )) (ChainP.fcy<sup is-sup fc) 1001 z10 {z} fc = subst (λ k → (z ≡ k) ∨ ( z << k )) (sym (sf1=sf0 ? )) (ChainP.fcy<sup is-sup fc)
983 z11 : {s z1 : Ordinal} → (lt : supf1 s o< supf1 u ) → FClosure A f (supf1 s ) z1 1002 z11 : {s z1 : Ordinal} → (lt : supf1 s o< supf1 u ) → FClosure A f (supf1 s ) z1
984 → (z1 ≡ supf1 u ) ∨ ( z1 << supf1 u ) 1003 → (z1 ≡ supf1 u ) ∨ ( z1 << supf1 u )
990 s≤px = ordtrans s<u ? -- (o<→≤ u<x) 1009 s≤px = ordtrans s<u ? -- (o<→≤ u<x)
991 lt0 : supf0 s o< supf0 u 1010 lt0 : supf0 s o< supf0 u
992 lt0 = subst₂ (λ j k → j o< k ) (sf1=sf0 s≤px) (sf1=sf0 ? ) lt 1011 lt0 = subst₂ (λ j k → j o< k ) (sf1=sf0 s≤px) (sf1=sf0 ? ) lt
993 z12 : supf1 u ≡ u 1012 z12 : supf1 u ≡ u
994 z12 = trans (sf1=sf0 ? ) (ChainP.supu=u is-sup) 1013 z12 = trans (sf1=sf0 ? ) (ChainP.supu=u is-sup)
1014 zc18 : supf1 u o< supf1 x
1015 zc18 = ?
995 1016
996 1017
997 1018
998 record STMP {z : Ordinal} (z≤x : z o≤ x ) : Set (Level.suc n) where 1019 record STMP {z : Ordinal} (z≤x : z o≤ x ) : Set (Level.suc n) where
999 field 1020 field
1053 ... | case2 sfz<sfpx = ⊥-elim ( ¬p<x<op ⟪ cs05 , cs06 ⟫ ) where 1074 ... | case2 sfz<sfpx = ⊥-elim ( ¬p<x<op ⟪ cs05 , cs06 ⟫ ) where
1054 --- supf1 z1 ≡ px , z1 o< px , px ≡ supf0 z1 o< supf0 px o< x 1075 --- supf1 z1 ≡ px , z1 o< px , px ≡ supf0 z1 o< supf0 px o< x
1055 cs05 : px o< supf0 px 1076 cs05 : px o< supf0 px
1056 cs05 = subst₂ ( λ j k → j o< k ) sfz=px (sf1=sf0 o≤-refl ) sfz<sfpx 1077 cs05 = subst₂ ( λ j k → j o< k ) sfz=px (sf1=sf0 o≤-refl ) sfz<sfpx
1057 cs06 : supf0 px o< osuc px 1078 cs06 : supf0 px o< osuc px
1058 cs06 = subst (λ k → supf0 px o< k ) (sym opx=x) sfpx<x 1079 cs06 = subst (λ k → supf0 px o< k ) (sym opx=x) ?
1059 csupf2 | tri≈ ¬a b ¬c | record { eq = eq1 } = zc12 (case2 (init (ZChain.asupf zc) (cong supf0 (sym b)))) 1080 csupf2 | tri≈ ¬a b ¬c | record { eq = eq1 } = zc12 (case2 (init (ZChain.asupf zc) (cong supf0 (sym b))))
1060 csupf2 | tri> ¬a ¬b px<z1 | record { eq = eq1 } = ? 1081 csupf2 | tri> ¬a ¬b px<z1 | record { eq = eq1 } = ?
1061 -- ⊥-elim ( ¬p<x<op ⟪ px<z1 , subst (λ k → z1 o< k) (sym opx=x) z1<x ⟫ ) 1082 -- ⊥-elim ( ¬p<x<op ⟪ px<z1 , subst (λ k → z1 o< k) (sym opx=x) z1<x ⟫ )
1062 1083
1063 1084
1064 zc4 : ZChain A f mf ay x --- x o≤ supf px 1085 zc41 | (case1 sfp=sp1 ) = record { supf = supf0 ; sup=u = ? ; asupf = ? ; supf-mono = ? ; supf-< = ?
1065 zc4 with trio< x (supf0 px)
1066 ... | tri> ¬a ¬b c = zc41 c
1067 ... | tri≈ ¬a b ¬c = ?
1068 ... | tri< a ¬b ¬c = record { supf = supf0 ; sup=u = ? ; asupf = ? ; supf-mono = ? ; supf-< = ?
1069 ; supfmax = ? ; minsup = ? ; supf-is-minsup = ? ; csupf = ? } where 1086 ; supfmax = ? ; minsup = ? ; supf-is-minsup = ? ; csupf = ? } where
1070 1087
1071 -- supf0 px not is included by the chain 1088 -- supf0 px not is included by the chain
1072 -- supf1 x ≡ supf0 px because of supfmax 1089 -- supf1 x ≡ supf0 px because of supfmax
1073 1090
1143 ... | case2 lt = subst (λ k → (w ≡ k) ∨ (w << k)) s1u=x ? 1160 ... | case2 lt = subst (λ k → (w ≡ k) ∨ (w << k)) s1u=x ?
1144 zc12 : supf0 x ≡ u1 1161 zc12 : supf0 x ≡ u1
1145 zc12 = subst (λ k → supf0 k ≡ u1) eq ? 1162 zc12 = subst (λ k → supf0 k ≡ u1) eq ?
1146 zcsup : xSUP (UnionCF A f mf ay supf0 px) x 1163 zcsup : xSUP (UnionCF A f mf ay supf0 px) x
1147 zcsup = record { ax = subst (λ k → odef A k) (trans zc12 eq) (ZChain.asupf zc) 1164 zcsup = record { ax = subst (λ k → odef A k) (trans zc12 eq) (ZChain.asupf zc)
1148 ; is-sup = record { x≤sup = x≤sup } } 1165 ; is-sup = record { x≤sup = x≤sup ; minsup = ? } }
1149 zc11 (case2 hp) {z} ⟪ az , ch-is-sup u1 u1<x u1-is-sup fc ⟫ | tri> ¬a ¬b px<u = case1 ? where 1166 zc11 (case2 hp) {z} ⟪ az , ch-is-sup u1 u1<x u1-is-sup fc ⟫ | tri> ¬a ¬b px<u = case1 ? where
1150 eq : u1 ≡ x 1167 eq : u1 ≡ x
1151 eq with trio< u1 x 1168 eq with trio< u1 x
1152 ... | tri< a ¬b ¬c = ⊥-elim ( ¬p<x<op ⟪ px<u , subst (λ k → u1 o< k ) (sym (Oprev.oprev=x op )) a ⟫ ) 1169 ... | tri< a ¬b ¬c = ⊥-elim ( ¬p<x<op ⟪ px<u , subst (λ k → u1 o< k ) (sym (Oprev.oprev=x op )) a ⟫ )
1153 ... | tri≈ ¬a b ¬c = b 1170 ... | tri≈ ¬a b ¬c = b
1195 zc37 : MinSUP A (UnionCF A f mf ay supf0 z) 1212 zc37 : MinSUP A (UnionCF A f mf ay supf0 z)
1196 zc37 = record { sup = ? ; asm = ? ; x≤sup = ? } 1213 zc37 = record { sup = ? ; asm = ? ; x≤sup = ? }
1197 sup=u : {b : Ordinal} (ab : odef A b) → 1214 sup=u : {b : Ordinal} (ab : odef A b) →
1198 b o≤ x → IsSup A (UnionCF A f mf ay supf0 b) ab ∧ (¬ HasPrev A (UnionCF A f mf ay supf0 b) b f ) → supf0 b ≡ b 1215 b o≤ x → IsSup A (UnionCF A f mf ay supf0 b) ab ∧ (¬ HasPrev A (UnionCF A f mf ay supf0 b) b f ) → supf0 b ≡ b
1199 sup=u {b} ab b≤x is-sup with trio< b px 1216 sup=u {b} ab b≤x is-sup with trio< b px
1200 ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) ⟪ record { x≤sup = λ lt → IsSup.x≤sup (proj1 is-sup) lt } , proj2 is-sup ⟫ 1217 ... | tri< a ¬b ¬c = ZChain.sup=u zc ab (o<→≤ a) ⟪ record { x≤sup = λ lt → IsSup.x≤sup (proj1 is-sup) lt ; minsup = ? } , proj2 is-sup ⟫
1201 ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (o≤-refl0 b) ⟪ record { x≤sup = λ lt → IsSup.x≤sup (proj1 is-sup) lt } , proj2 is-sup ⟫ 1218 ... | tri≈ ¬a b ¬c = ZChain.sup=u zc ab (o≤-refl0 b) ⟪ record { x≤sup = λ lt → IsSup.x≤sup (proj1 is-sup) lt ; minsup = ? } , proj2 is-sup ⟫
1202 ... | tri> ¬a ¬b px<b = zc31 ? where 1219 ... | tri> ¬a ¬b px<b = zc31 ? where
1203 zc30 : x ≡ b 1220 zc30 : x ≡ b
1204 zc30 with osuc-≡< b≤x 1221 zc30 with osuc-≡< b≤x
1205 ... | case1 eq = sym (eq) 1222 ... | case1 eq = sym (eq)
1206 ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ ) 1223 ... | case2 b<x = ⊥-elim (¬p<x<op ⟪ px<b , subst (λ k → b o< k ) (sym (Oprev.oprev=x op)) b<x ⟫ )
1207 zcsup : xSUP (UnionCF A f mf ay supf0 px) x 1224 zcsup : xSUP (UnionCF A f mf ay supf0 px) x
1208 zcsup with zc30 1225 zcsup with zc30
1209 ... | refl = record { ax = ab ; is-sup = record { x≤sup = λ {w} lt → 1226 ... | refl = record { ax = ab ; is-sup = record { x≤sup = λ {w} lt →
1210 IsSup.x≤sup (proj1 is-sup) ?} } 1227 IsSup.x≤sup (proj1 is-sup) ? ; minsup = ? } }
1211 zc31 : ( (¬ xSUP (UnionCF A f mf ay supf0 px) x ) ∨ HasPrev A (UnionCF A f mf ay supf0 px) x f) → supf0 b ≡ b 1228 zc31 : ( (¬ xSUP (UnionCF A f mf ay supf0 px) x ) ∨ HasPrev A (UnionCF A f mf ay supf0 px) x f) → supf0 b ≡ b
1212 zc31 (case1 ¬sp=x) with zc30 1229 zc31 (case1 ¬sp=x) with zc30
1213 ... | refl = ⊥-elim (¬sp=x zcsup ) 1230 ... | refl = ⊥-elim (¬sp=x zcsup )
1214 zc31 (case2 hasPrev ) with zc30 1231 zc31 (case2 hasPrev ) with zc30
1215 ... | refl = ⊥-elim ( proj2 is-sup record { ax = HasPrev.ax hasPrev ; y = HasPrev.y hasPrev 1232 ... | refl = ⊥-elim ( proj2 is-sup record { ax = HasPrev.ax hasPrev ; y = HasPrev.y hasPrev
1364 z13 : * (& s) < * sp 1381 z13 : * (& s) < * sp
1365 z13 with x≤sup ( ZChain.chain∋init zc ) 1382 z13 with x≤sup ( ZChain.chain∋init zc )
1366 ... | case1 eq = ⊥-elim ( ne (cong (&) eq) ) 1383 ... | case1 eq = ⊥-elim ( ne (cong (&) eq) )
1367 ... | case2 lt = subst₂ (λ j k → j < k ) (sym *iso) (sym *iso) lt 1384 ... | case2 lt = subst₂ (λ j k → j < k ) (sym *iso) (sym *iso) lt
1368 z19 : IsSup A chain {& (SUP.sup sp1)} (SUP.as sp1) 1385 z19 : IsSup A chain {& (SUP.sup sp1)} (SUP.as sp1)
1369 z19 = record { x≤sup = z20 } where 1386 z19 = record { x≤sup = z20 ; minsup = ? } where
1370 z20 : {y : Ordinal} → odef chain y → (y ≡ & (SUP.sup sp1)) ∨ (y << & (SUP.sup sp1)) 1387 z20 : {y : Ordinal} → odef chain y → (y ≡ & (SUP.sup sp1)) ∨ (y << & (SUP.sup sp1))
1371 z20 {y} zy with x≤sup (subst (λ k → odef chain k ) (sym &iso) zy) 1388 z20 {y} zy with x≤sup (subst (λ k → odef chain k ) (sym &iso) zy)
1372 ... | case1 y=p = case1 (subst (λ k → k ≡ _ ) &iso ( cong (&) y=p )) 1389 ... | case1 y=p = case1 (subst (λ k → k ≡ _ ) &iso ( cong (&) y=p ))
1373 ... | case2 y<p = case2 (subst (λ k → * y < k ) (sym *iso) y<p ) 1390 ... | case2 y<p = case2 (subst (λ k → * y < k ) (sym *iso) y<p )
1374 ztotal : IsTotalOrderSet (ZChain.chain zc) 1391 ztotal : IsTotalOrderSet (ZChain.chain zc)
1494 sz<<c z<A = MinSUP.x≤sup msp1 (ZChain.csupf zc (z09 (ZChain.asupf zc) )) 1511 sz<<c z<A = MinSUP.x≤sup msp1 (ZChain.csupf zc (z09 (ZChain.asupf zc) ))
1495 1512
1496 sc=c : supf mc ≡ mc 1513 sc=c : supf mc ≡ mc
1497 sc=c = ZChain.sup=u zc (MinSUP.asm msp1) (o<→≤ (∈∧P→o< ⟪ MinSUP.asm msp1 , lift true ⟫ )) ⟪ is-sup , not-hasprev ⟫ where 1514 sc=c = ZChain.sup=u zc (MinSUP.asm msp1) (o<→≤ (∈∧P→o< ⟪ MinSUP.asm msp1 , lift true ⟫ )) ⟪ is-sup , not-hasprev ⟫ where
1498 is-sup : IsSup A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) mc) (MinSUP.asm msp1) 1515 is-sup : IsSup A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) mc) (MinSUP.asm msp1)
1499 is-sup = record { x≤sup = λ zy → MinSUP.x≤sup msp1 (chain-mono (cf nmx) (cf-is-≤-monotonic nmx) as0 supf (ZChain.supf-mono zc) (o<→≤ mc<A) zy )} 1516 is-sup = record { x≤sup = λ zy → MinSUP.x≤sup msp1 (chain-mono (cf nmx) (cf-is-≤-monotonic nmx) as0 supf (ZChain.supf-mono zc) (o<→≤ mc<A) zy )
1517 ; minsup = ? }
1500 not-hasprev : ¬ HasPrev A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) mc) mc (cf nmx) 1518 not-hasprev : ¬ HasPrev A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) mc) mc (cf nmx)
1501 not-hasprev record { ax = ax ; y = y ; ay = ⟪ ua1 , ch-init fc ⟫ ; x=fy = x=fy } = ⊥-elim ( <-irr z31 z30 ) where 1519 not-hasprev record { ax = ax ; y = y ; ay = ⟪ ua1 , ch-init fc ⟫ ; x=fy = x=fy } = ⊥-elim ( <-irr z31 z30 ) where
1502 z30 : * mc < * (cf nmx mc) 1520 z30 : * mc < * (cf nmx mc)
1503 z30 = proj1 (cf-is-<-monotonic nmx mc (MinSUP.asm msp1)) 1521 z30 = proj1 (cf-is-<-monotonic nmx mc (MinSUP.asm msp1))
1504 z31 : ( * (cf nmx mc) ≡ * mc ) ∨ ( * (cf nmx mc) < * mc ) 1522 z31 : ( * (cf nmx mc) ≡ * mc ) ∨ ( * (cf nmx mc) < * mc )
1513 z32 = ftrans<=-< z31 (subst (λ k → * mc < * k ) (cong (cf nmx) x=fy) z30 ) 1531 z32 = ftrans<=-< z31 (subst (λ k → * mc < * k ) (cong (cf nmx) x=fy) z30 )
1514 z48 : ( * (cf nmx (cf nmx y)) ≡ * (supf mc)) ∨ (* (cf nmx (cf nmx y)) < * (supf mc) ) 1532 z48 : ( * (cf nmx (cf nmx y)) ≡ * (supf mc)) ∨ (* (cf nmx (cf nmx y)) < * (supf mc) )
1515 z48 = <=to≤ (ZChain1.order (SZ1 (cf nmx) (cf-is-≤-monotonic nmx) as0 zc (& A)) mc<A u<x (fsuc _ ( fsuc _ fc ))) 1533 z48 = <=to≤ (ZChain1.order (SZ1 (cf nmx) (cf-is-≤-monotonic nmx) as0 zc (& A)) mc<A u<x (fsuc _ ( fsuc _ fc )))
1516 1534
1517 is-sup : IsSup A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) (MinSUP.asm spd) 1535 is-sup : IsSup A (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) (MinSUP.asm spd)
1518 is-sup = record { x≤sup = z22 } where 1536 is-sup = record { x≤sup = z22 ; minsup = ? } where
1519 z23 : {z : Ordinal } → odef (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc) z → (z ≡ MinSUP.sup spd) ∨ (z << MinSUP.sup spd) 1537 z23 : {z : Ordinal } → odef (uchain (cf nmx) (cf-is-≤-monotonic nmx) asc) z → (z ≡ MinSUP.sup spd) ∨ (z << MinSUP.sup spd)
1520 z23 lt = MinSUP.x≤sup spd lt 1538 z23 lt = MinSUP.x≤sup spd lt
1521 z22 : {y : Ordinal} → odef (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) y → 1539 z22 : {y : Ordinal} → odef (UnionCF A (cf nmx) (cf-is-≤-monotonic nmx) as0 (ZChain.supf zc) d) y →
1522 (y ≡ MinSUP.sup spd) ∨ (y << MinSUP.sup spd) 1540 (y ≡ MinSUP.sup spd) ∨ (y << MinSUP.sup spd)
1523 z22 {a} ⟪ aa , ch-init fc ⟫ = case2 ( ( ftrans<=-< z32 ( sc<<d {mc} asc spd ) )) where 1541 z22 {a} ⟪ aa , ch-init fc ⟫ = case2 ( ( ftrans<=-< z32 ( sc<<d {mc} asc spd ) )) where