Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison zf-in-agda.html @ 425:f7d66c84bc26
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 05 Aug 2020 19:37:07 +0900 |
parents | 4cbcf71b09c4 |
children |
comparison
equal
deleted
inserted
replaced
424:cc7909f86841 | 425:f7d66c84bc26 |
---|---|
821 a Set. The idea is to use an ordinal as a pointer to OD. | 821 a Set. The idea is to use an ordinal as a pointer to OD. |
822 Unfortunately this scheme does not work well. As we saw OD includes all Ordinals, which is a maximum of OD, but Ordinals has no maximum at all. So we have a contradction like | 822 Unfortunately this scheme does not work well. As we saw OD includes all Ordinals, which is a maximum of OD, but Ordinals has no maximum at all. So we have a contradction like |
823 <p> | 823 <p> |
824 | 824 |
825 <pre> | 825 <pre> |
826 ¬OD-order : ( od→ord : OD → Ordinal ) | 826 ¬OD-order : ( & : OD → Ordinal ) |
827 → ( ord→od : Ordinal → OD ) → ( { x y : OD } → def y ( od→ord x ) → od→ord x o< od→ord y) → ⊥ | 827 → ( * : Ordinal → OD ) → ( { x y : OD } → def y ( & x ) → & x o< & y) → ⊥ |
828 ¬OD-order od→ord ord→od c<→o< = ? | 828 ¬OD-order & * c<→o< = ? |
829 | 829 |
830 </pre> | 830 </pre> |
831 Actualy we can prove this contrdction, so we need some restrctions on OD. | 831 Actualy we can prove this contrdction, so we need some restrctions on OD. |
832 <p> | 832 <p> |
833 This is a kind of Russel paradox, that is if OD contains everything, what happens if it contains itself. | 833 This is a kind of Russel paradox, that is if OD contains everything, what happens if it contains itself. |
860 <h2><a name="content036">1 to 1 mapping between an HOD and an Ordinal</a></h2> | 860 <h2><a name="content036">1 to 1 mapping between an HOD and an Ordinal</a></h2> |
861 HOD is a predicate on Ordinals and the solution is bounded by some ordinal. If we have a mapping | 861 HOD is a predicate on Ordinals and the solution is bounded by some ordinal. If we have a mapping |
862 <p> | 862 <p> |
863 | 863 |
864 <pre> | 864 <pre> |
865 od→ord : HOD → Ordinal | 865 & : HOD → Ordinal |
866 ord→od : Ordinal → HOD | 866 * : Ordinal → HOD |
867 oiso : {x : HOD } → ord→od ( od→ord x ) ≡ x | 867 oiso : {x : HOD } → * ( & x ) ≡ x |
868 diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x | 868 diso : {x : Ordinal } → & ( * x ) ≡ x |
869 | 869 |
870 </pre> | 870 </pre> |
871 we can check an HOD is an element of the OD using def. | 871 we can check an HOD is an element of the OD using def. |
872 <p> | 872 <p> |
873 A ∋ x can be define as follows. | 873 A ∋ x can be define as follows. |
874 <p> | 874 <p> |
875 | 875 |
876 <pre> | 876 <pre> |
877 _∋_ : ( A x : HOD ) → Set n | 877 _∋_ : ( A x : HOD ) → Set n |
878 _∋_ A x = def (od A) ( od→ord x ) | 878 _∋_ A x = def (od A) ( & x ) |
879 | 879 |
880 </pre> | 880 </pre> |
881 In ψ : Ordinal → Set, if A is a record { def = λ x → ψ x } , then | 881 In ψ : Ordinal → Set, if A is a record { def = λ x → ψ x } , then |
882 <p> | 882 <p> |
883 | 883 |
884 <pre> | 884 <pre> |
885 A x = def A ( od→ord x ) = ψ (od→ord x) | 885 A x = def A ( & x ) = ψ (& x) |
886 | 886 |
887 </pre> | 887 </pre> |
888 They say the existing of the mappings can be proved in Classical Set Theory, but we | 888 They say the existing of the mappings can be proved in Classical Set Theory, but we |
889 simply assumes these non constructively. | 889 simply assumes these non constructively. |
890 <p> | 890 <p> |
896 <h2><a name="content037">Order preserving in the mapping of OD and Ordinal</a></h2> | 896 <h2><a name="content037">Order preserving in the mapping of OD and Ordinal</a></h2> |
897 Ordinals have the order and HOD has a natural order based on inclusion ( def / ∋ ). | 897 Ordinals have the order and HOD has a natural order based on inclusion ( def / ∋ ). |
898 <p> | 898 <p> |
899 | 899 |
900 <pre> | 900 <pre> |
901 def (od y) ( od→ord x ) | 901 def (od y) ( & x ) |
902 | 902 |
903 </pre> | 903 </pre> |
904 An elements of HOD should be defined before the HOD, that is, an ordinal corresponding an elements | 904 An elements of HOD should be defined before the HOD, that is, an ordinal corresponding an elements |
905 have to be smaller than the corresponding ordinal of the containing OD. | 905 have to be smaller than the corresponding ordinal of the containing OD. |
906 We also assumes subset is always smaller. This is necessary to make a limit of Power Set. | 906 We also assumes subset is always smaller. This is necessary to make a limit of Power Set. |
907 <p> | 907 <p> |
908 | 908 |
909 <pre> | 909 <pre> |
910 c<→o< : {x y : HOD } → def (od y) ( od→ord x ) → od→ord x o< od→ord y | 910 c<→o< : {x y : HOD } → def (od y) ( & x ) → & x o< & y |
911 ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → od→ord y o< osuc (od→ord z) | 911 ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) |
912 | 912 |
913 </pre> | 913 </pre> |
914 If wa assumes reverse order preservation, | 914 If wa assumes reverse order preservation, |
915 <p> | 915 <p> |
916 | 916 |
917 <pre> | 917 <pre> |
918 o<→c< : {n : Level} {x y : Ordinal } → x o< y → def (ord→od y) x | 918 o<→c< : {n : Level} {x y : Ordinal } → x o< y → def (* y) x |
919 | 919 |
920 </pre> | 920 </pre> |
921 ∀ x ∋ ∅ becomes true, which manes all OD becomes Ordinals in the model. | 921 ∀ x ∋ ∅ becomes true, which manes all OD becomes Ordinals in the model. |
922 <p> | 922 <p> |
923 <img src="fig/ODandOrdinals.svg"> | 923 <img src="fig/ODandOrdinals.svg"> |
984 | 984 |
985 <pre> | 985 <pre> |
986 data infinite-d : ( x : Ordinal ) → Set n where | 986 data infinite-d : ( x : Ordinal ) → Set n where |
987 iφ : infinite-d o∅ | 987 iφ : infinite-d o∅ |
988 isuc : {x : Ordinal } → infinite-d x → | 988 isuc : {x : Ordinal } → infinite-d x → |
989 infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) )) | 989 infinite-d (& ( Union (* x , (* x , * x ) ) )) |
990 | 990 |
991 </pre> | 991 </pre> |
992 Union (x , ( x , x )) should be an direct successor of x, but we cannot prove it in our model. | 992 Union (x , ( x , x )) should be an direct successor of x, but we cannot prove it in our model. |
993 <p> | 993 <p> |
994 | 994 |
1024 OD is an equation on Ordinals, we can simply write axiom of pair in the OD. | 1024 OD is an equation on Ordinals, we can simply write axiom of pair in the OD. |
1025 <p> | 1025 <p> |
1026 | 1026 |
1027 <pre> | 1027 <pre> |
1028 _,_ : HOD → HOD → HOD | 1028 _,_ : HOD → HOD → HOD |
1029 x , y = record { od = record { def = λ t → (t ≡ od→ord x ) ∨ ( t ≡ od→ord y ) } ; odmax = ? ; <odmax = ? } | 1029 x , y = record { od = record { def = λ t → (t ≡ & x ) ∨ ( t ≡ & y ) } ; odmax = ? ; <odmax = ? } |
1030 | 1030 |
1031 </pre> | 1031 </pre> |
1032 It is easy to find out odmax from odmax of x and y. | 1032 It is easy to find out odmax from odmax of x and y. |
1033 <p> | 1033 <p> |
1034 ≡ is an equality of λ terms, but please not that this is equality on Ordinals. | 1034 ≡ is an equality of λ terms, but please not that this is equality on Ordinals. |
1042 <pre> | 1042 <pre> |
1043 pair→ : ( x y t : OD ) → (x , y) ∋ t → ( t == x ) ∨ ( t == y ) | 1043 pair→ : ( x y t : OD ) → (x , y) ∋ t → ( t == x ) ∨ ( t == y ) |
1044 pair→ x y t p = ? | 1044 pair→ x y t p = ? |
1045 | 1045 |
1046 </pre> | 1046 </pre> |
1047 In this program, type of p is ( x , y ) ∋ t , that is def ( x , y ) that is, (t ≡ od→ord x ) ∨ ( t ≡ od→ord y ) . | 1047 In this program, type of p is ( x , y ) ∋ t , that is def ( x , y ) that is, (t ≡ & x ) ∨ ( t ≡ & y ) . |
1048 <p> | 1048 <p> |
1049 Since _∨_ is a data, it can be developed as (C-c C-c : agda2-make-case ). | 1049 Since _∨_ is a data, it can be developed as (C-c C-c : agda2-make-case ). |
1050 <p> | 1050 <p> |
1051 | 1051 |
1052 <pre> | 1052 <pre> |
1065 The ? in case1 is t == x, so we have to create this from t≡x, which is a name of a variable | 1065 The ? in case1 is t == x, so we have to create this from t≡x, which is a name of a variable |
1066 which type is | 1066 which type is |
1067 <p> | 1067 <p> |
1068 | 1068 |
1069 <pre> | 1069 <pre> |
1070 t≡x : od→ord t ≡ od→ord x | 1070 t≡x : & t ≡ & x |
1071 | 1071 |
1072 </pre> | 1072 </pre> |
1073 which is shown by an Agda command (C-C C-E : agda2-show-context ). | 1073 which is shown by an Agda command (C-C C-E : agda2-show-context ). |
1074 <p> | 1074 <p> |
1075 But we haven't defined == yet. | 1075 But we haven't defined == yet. |
1122 <p> | 1122 <p> |
1123 Actual proof is rather complicated. | 1123 Actual proof is rather complicated. |
1124 <p> | 1124 <p> |
1125 | 1125 |
1126 <pre> | 1126 <pre> |
1127 eq→ (extensionality0 {A} {B} eq ) {x} d = odef-iso {A} {B} (sym diso) (proj1 (eq (ord→od x))) d | 1127 eq→ (extensionality0 {A} {B} eq ) {x} d = odef-iso {A} {B} (sym diso) (proj1 (eq (* x))) d |
1128 eq← (extensionality0 {A} {B} eq ) {x} d = odef-iso {B} {A} (sym diso) (proj2 (eq (ord→od x))) d | 1128 eq← (extensionality0 {A} {B} eq ) {x} d = odef-iso {B} {A} (sym diso) (proj2 (eq (* x))) d |
1129 | 1129 |
1130 </pre> | 1130 </pre> |
1131 where | 1131 where |
1132 <p> | 1132 <p> |
1133 | 1133 |
1136 odef-iso refl t = t | 1136 odef-iso refl t = t |
1137 | 1137 |
1138 </pre> | 1138 </pre> |
1139 | 1139 |
1140 <hr/> | 1140 <hr/> |
1141 <h2><a name="content045">Validity of Axiom of Extensionality</a></h2> | 1141 <h2><a name="content045">The uniqueness of HOD</a></h2> |
1142 | 1142 |
1143 <p> | 1143 <p> |
1144 To prove extensionality or other we need ==→o≡. | |
1145 <p> | |
1146 Since we have ==→o≡ , so odmax have to be unique. We should have odmaxmin in HOD. | |
1147 We can calculate the minimum using sup if we have bound but it is tedius. | |
1148 Only Select has non minimum odmax. We have the same problem on 'def' itself, but we leave it, that is we assume the | |
1149 assumption of predicates of Agda have a unique form, it is something like the | |
1150 functional extensionality assumption. | |
1151 <p> | |
1152 | |
1153 <hr/> | |
1154 <h2><a name="content046">Validity of Axiom of Extensionality</a></h2> | |
1144 If we can derive (w ∋ A) ⇔ (w ∋ B) from od A == od B, the axiom becomes valid, but it seems impossible, so we assumes | 1155 If we can derive (w ∋ A) ⇔ (w ∋ B) from od A == od B, the axiom becomes valid, but it seems impossible, so we assumes |
1145 <p> | 1156 <p> |
1146 | 1157 |
1147 <pre> | 1158 <pre> |
1148 ==→o≡ : { x y : HOD } → (od x == od y) → x ≡ y | 1159 ==→o≡ : { x y : HOD } → (od x == od y) → x ≡ y |
1157 proj2 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) (sym ( ==→o≡ (extensionality0 {A} {B} eq) )) d | 1168 proj2 (extensionality {A} {B} {w} eq ) d = subst (λ k → w ∋ k) (sym ( ==→o≡ (extensionality0 {A} {B} eq) )) d |
1158 | 1169 |
1159 </pre> | 1170 </pre> |
1160 | 1171 |
1161 <hr/> | 1172 <hr/> |
1162 <h2><a name="content046">Axiom of infinity</a></h2> | 1173 <h2><a name="content047">Axiom of infinity</a></h2> |
1163 | 1174 |
1164 <p> | 1175 <p> |
1165 It means it has ω as a ZF Set. It is ususally written like this. | 1176 It means it has ω as a ZF Set. It is ususally written like this. |
1166 <p> | 1177 <p> |
1167 | 1178 |
1178 infinity : ∀( x : ZFSet ) → x ∈ infinite → ( x ∪ { x }) ∈ infinite | 1189 infinity : ∀( x : ZFSet ) → x ∈ infinite → ( x ∪ { x }) ∈ infinite |
1179 | 1190 |
1180 </pre> | 1191 </pre> |
1181 | 1192 |
1182 <hr/> | 1193 <hr/> |
1183 <h2><a name="content047">ω in HOD</a></h2> | 1194 <h2><a name="content048">ω in HOD</a></h2> |
1184 | 1195 |
1185 <p> | 1196 <p> |
1186 To define an OD which arrows od→ord (Union (x , (x , x))) as a predicate, we can use Agda data structure. | 1197 To define an OD which arrows & (Union (x , (x , x))) as a predicate, we can use Agda data structure. |
1187 <p> | 1198 <p> |
1188 | 1199 |
1189 <pre> | 1200 <pre> |
1190 data infinite-d : ( x : Ordinal ) → Set n where | 1201 data infinite-d : ( x : Ordinal ) → Set n where |
1191 iφ : infinite-d o∅ | 1202 iφ : infinite-d o∅ |
1192 isuc : {x : Ordinal } → infinite-d x → | 1203 isuc : {x : Ordinal } → infinite-d x → |
1193 infinite-d (od→ord ( Union (ord→od x , (ord→od x , ord→od x ) ) )) | 1204 infinite-d (& ( Union (* x , (* x , * x ) ) )) |
1194 | 1205 |
1195 </pre> | 1206 </pre> |
1196 It has simular structure as Data.Nat in Agda, and it defines a correspendence of HOD and the data structure. Now | 1207 It has simular structure as Data.Nat in Agda, and it defines a correspendence of HOD and the data structure. Now |
1197 we can define HOD like this. | 1208 we can define HOD like this. |
1198 <p> | 1209 <p> |
1200 <pre> | 1211 <pre> |
1201 infinite : HOD | 1212 infinite : HOD |
1202 infinite = record { od = record { def = λ x → infinite-d x } ; odmax = ? ; <odmax = ? } | 1213 infinite = record { od = record { def = λ x → infinite-d x } ; odmax = ? ; <odmax = ? } |
1203 | 1214 |
1204 </pre> | 1215 </pre> |
1205 So what is the bound of ω? Analyzing the definition, it depends on the value of od→ord (x , x), which | 1216 So what is the bound of ω? Analyzing the definition, it depends on the value of & (x , x), which |
1206 cannot know the aboslute value. This is because we don't have constructive definition of od→ord : HOD → Ordinal. | 1217 cannot know the aboslute value. This is because we don't have constructive definition of & : HOD → Ordinal. |
1207 <p> | 1218 <p> |
1208 | 1219 |
1209 <hr/> | 1220 <hr/> |
1210 <h2><a name="content048">HOD Ordrinal mapping</a></h2> | 1221 <h2><a name="content049">HOD and Agda data structure</a></h2> |
1222 We may have | |
1223 <p> | |
1224 | |
1225 <pre> | |
1226 a HOD <=> Agda Data Strucure | |
1227 | |
1228 </pre> | |
1229 as a data in Agda. Ex. | |
1230 <p> | |
1231 | |
1232 <pre> | |
1233 data ord-pair : (p : Ordinal) → Set n where | |
1234 pair : (x y : Ordinal ) → ord-pair ( & ( < * x , * y > ) ) | |
1235 ZFProduct : OD | |
1236 ZFProduct = record { def = λ x → ord-pair x } | |
1237 pi1 : { p : Ordinal } → ord-pair p → Ordinal | |
1238 pi1 ( pair x y) = x | |
1239 π1 : { p : HOD } → def ZFProduct (& p) → HOD | |
1240 π1 lt = * (pi1 lt ) | |
1241 p-iso : { x : HOD } → (p : def ZFProduct (& x) ) → < π1 p , π2 p > ≡ x | |
1242 p-iso {x} p = ord≡→≡ (op-iso p) | |
1243 | |
1244 </pre> | |
1245 | |
1246 <hr/> | |
1247 <h2><a name="content050">HOD Ordrinal mapping</a></h2> | |
1248 | |
1249 <p> | |
1211 We have large freedom on HOD. We reqest no minimality on odmax, so it may arbitrary larger. | 1250 We have large freedom on HOD. We reqest no minimality on odmax, so it may arbitrary larger. |
1212 The address of HOD can be larger at least it have to be larger than the content's address. | 1251 The address of HOD can be larger at least it have to be larger than the content's address. |
1213 We only have a relative ordering such as | 1252 We only have a relative ordering such as |
1214 <p> | 1253 <p> |
1215 | 1254 |
1216 <pre> | 1255 <pre> |
1217 pair-xx<xy : {x y : HOD} → od→ord (x , x) o< osuc (od→ord (x , y) ) | 1256 pair-xx<xy : {x y : HOD} → & (x , x) o< osuc (& (x , y) ) |
1218 pair<y : {x y : HOD } → y ∋ x → od→ord (x , x) o< osuc (od→ord y) | 1257 pair<y : {x y : HOD } → y ∋ x → & (x , x) o< osuc (& y) |
1219 | 1258 |
1220 </pre> | 1259 </pre> |
1221 Basicaly, we cannot know the concrete address of HOD other than empty set. | 1260 Basicaly, we cannot know the concrete address of HOD other than empty set. |
1222 <p> | 1261 <p> |
1223 <img src="fig/address-of-HOD.svg"> | 1262 <img src="fig/address-of-HOD.svg"> |
1224 | 1263 |
1225 <p> | 1264 <p> |
1226 | 1265 |
1227 <hr/> | 1266 <hr/> |
1228 <h2><a name="content049">Possible restriction on HOD</a></h2> | 1267 <h2><a name="content051">Possible restriction on HOD</a></h2> |
1229 We need some restriction on the HOD-Ordinal mapping. Simple one is this. | 1268 We need some restriction on the HOD-Ordinal mapping. Simple one is this. |
1230 <p> | 1269 <p> |
1231 | 1270 |
1232 <pre> | 1271 <pre> |
1233 ωmax : Ordinal | 1272 ωmax : Ordinal |
1237 It depends on infinite-d and put no assuption on the other similar construction. A more general one may be | 1276 It depends on infinite-d and put no assuption on the other similar construction. A more general one may be |
1238 <p> | 1277 <p> |
1239 | 1278 |
1240 <pre> | 1279 <pre> |
1241 hod-ord< : {x : HOD } → Set n | 1280 hod-ord< : {x : HOD } → Set n |
1242 hod-ord< {x} = od→ord x o< next (odmax x) | 1281 hod-ord< {x} = & x o< next (odmax x) |
1243 | 1282 |
1244 </pre> | 1283 </pre> |
1245 next : Ordinal → Ordinal means imediate next limit ordinal of x. It supress unecessary space between address of HOD and | 1284 next : Ordinal → Ordinal means imediate next limit ordinal of x. It supress unecessary space between address of HOD and |
1246 its bound. | 1285 its bound. |
1247 <p> | 1286 <p> |
1248 In other words, the space between address of HOD and its bound is arbitrary, it is possible to assume ω has no bound. | 1287 In other words, the space between address of HOD and its bound is arbitrary, it is possible to assume ω has no bound. |
1249 This is the reason of necessity of Axiom of infinite. | 1288 This is the reason of necessity of Axiom of infinite. |
1250 <p> | 1289 <p> |
1251 | 1290 |
1252 <hr/> | 1291 <hr/> |
1253 <h2><a name="content050">increment pase of address of HOD</a></h2> | 1292 <h2><a name="content052">increment pase of address of HOD</a></h2> |
1254 Assuming, hod-ord< , we have | 1293 Assuming, hod-ord< , we have |
1255 <p> | 1294 <p> |
1256 | 1295 |
1257 <pre> | 1296 <pre> |
1258 pair-ord< : {x : HOD } → ( {y : HOD } → od→ord y o< next (odmax y) ) → od→ord ( x , x ) o< next (od→ord x) | 1297 pair-ord< : {x : HOD } → ( {y : HOD } → & y o< next (odmax y) ) → & ( x , x ) o< next (& x) |
1259 pair-ord< {x} ho< = subst (λ k → od→ord (x , x) o< k ) lemmab0 lemmab1 where | 1298 pair-ord< {x} ho< = subst (λ k → & (x , x) o< k ) lemmab0 lemmab1 where |
1260 lemmab0 : next (odmax (x , x)) ≡ next (od→ord x) | 1299 lemmab0 : next (odmax (x , x)) ≡ next (& x) |
1261 | 1300 |
1262 </pre> | 1301 </pre> |
1263 So the address of ( x , x) and Union (x , (x , x)) is restricted in the limit ordinal. This makes ω bound. We can prove | 1302 So the address of ( x , x) and Union (x , (x , x)) is restricted in the limit ordinal. This makes ω bound. We can prove |
1264 <p> | 1303 <p> |
1265 | 1304 |
1266 <pre> | 1305 <pre> |
1267 infinite-bound : ({x : HOD} → od→ord x o< next (odmax x)) → {y : Ordinal} → infinite-d y → y o< next o∅ | 1306 infinite-bound : ({x : HOD} → & x o< next (odmax x)) → {y : Ordinal} → infinite-d y → y o< next o∅ |
1268 | 1307 |
1269 </pre> | 1308 </pre> |
1270 We also notice that if we have od→ord (x , x) ≡ osuc (od→ord x), c<→o< can be drived from ⊆→o≤ . | 1309 We also notice that if we have & (x , x) ≡ osuc (& x), c<→o< can be drived from ⊆→o≤ . |
1271 <p> | 1310 <p> |
1272 | 1311 |
1273 <pre> | 1312 <pre> |
1274 ⊆→o≤→c<→o< : ({x : HOD} → od→ord (x , x) ≡ osuc (od→ord x) ) | 1313 ⊆→o≤→c<→o< : ({x : HOD} → & (x , x) ≡ osuc (& x) ) |
1275 → ({y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → od→ord y o< osuc (od→ord z) ) | 1314 → ({y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) ) |
1276 → {x y : HOD } → def (od y) ( od→ord x ) → od→ord x o< od→ord y | 1315 → {x y : HOD } → def (od y) ( & x ) → & x o< & y |
1277 | 1316 |
1278 </pre> | 1317 </pre> |
1279 | 1318 |
1280 <hr/> | 1319 <hr/> |
1281 <h2><a name="content051">Non constructive assumptions so far</a></h2> | 1320 <h2><a name="content053">Non constructive assumptions so far</a></h2> |
1282 | 1321 |
1283 <p> | 1322 <p> |
1284 | 1323 |
1285 <pre> | 1324 <pre> |
1286 od→ord : HOD → Ordinal | 1325 & : HOD → Ordinal |
1287 ord→od : Ordinal → HOD | 1326 * : Ordinal → HOD |
1288 c<→o< : {x y : HOD } → def (od y) ( od→ord x ) → od→ord x o< od→ord y | 1327 c<→o< : {x y : HOD } → def (od y) ( & x ) → & x o< & y |
1289 ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → od→ord y o< osuc (od→ord z) | 1328 ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) |
1290 oiso : {x : HOD } → ord→od ( od→ord x ) ≡ x | 1329 oiso : {x : HOD } → * ( & x ) ≡ x |
1291 diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x | 1330 diso : {x : Ordinal } → & ( * x ) ≡ x |
1292 ==→o≡ : {x y : HOD } → (od x == od y) → x ≡ y | 1331 ==→o≡ : {x y : HOD } → (od x == od y) → x ≡ y |
1293 sup-o : (A : HOD) → ( ( x : Ordinal ) → def (od A) x → Ordinal ) → Ordinal | 1332 sup-o : (A : HOD) → ( ( x : Ordinal ) → def (od A) x → Ordinal ) → Ordinal |
1294 sup-o< : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o< sup-o A ψ | 1333 sup-o< : (A : HOD) → { ψ : ( x : Ordinal ) → def (od A) x → Ordinal } → ∀ {x : Ordinal } → (lt : def (od A) x ) → ψ x lt o< sup-o A ψ |
1295 | 1334 |
1296 </pre> | 1335 </pre> |
1297 | 1336 |
1298 <hr/> | 1337 <hr/> |
1299 <h2><a name="content052">Axiom which have negation form</a></h2> | 1338 <h2><a name="content054">Axiom which have negation form</a></h2> |
1300 | 1339 |
1301 <p> | 1340 <p> |
1302 | 1341 |
1303 <pre> | 1342 <pre> |
1304 Union, Selection | 1343 Union, Selection |
1318 </pre> | 1357 </pre> |
1319 If we have an assumption of law of exclude middle, we can recover the original A ∋ x form. | 1358 If we have an assumption of law of exclude middle, we can recover the original A ∋ x form. |
1320 <p> | 1359 <p> |
1321 | 1360 |
1322 <hr/> | 1361 <hr/> |
1323 <h2><a name="content053">Union </a></h2> | 1362 <h2><a name="content055">Union </a></h2> |
1324 The original form of the Axiom of Union is | 1363 The original form of the Axiom of Union is |
1325 <p> | 1364 <p> |
1326 | 1365 |
1327 <pre> | 1366 <pre> |
1328 ∀ x ∃ y ∀ z (z ∈ y ⇔ ∃ u ∈ x ∧ (z ∈ u)) | 1367 ∀ x ∃ y ∀ z (z ∈ y ⇔ ∃ u ∈ x ∧ (z ∈ u)) |
1339 The definition of Union in HOD is like this. | 1378 The definition of Union in HOD is like this. |
1340 <p> | 1379 <p> |
1341 | 1380 |
1342 <pre> | 1381 <pre> |
1343 Union : HOD → HOD | 1382 Union : HOD → HOD |
1344 Union U = record { od = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((odef U u) ∧ (odef (ord→od u) x))) } | 1383 Union U = record { od = record { def = λ x → ¬ (∀ (u : Ordinal ) → ¬ ((odef U u) ∧ (odef (* u) x))) } |
1345 ; odmax = osuc (od→ord U) ; <odmax = ? } | 1384 ; odmax = osuc (& U) ; <odmax = ? } |
1346 | 1385 |
1347 </pre> | 1386 </pre> |
1348 The bound of Union is evident, but its proof is rather complicated. | 1387 The bound of Union is evident, but its proof is rather complicated. |
1349 <p> | 1388 <p> |
1350 Proof of validity is straight forward. | 1389 Proof of validity is straight forward. |
1351 <p> | 1390 <p> |
1352 | 1391 |
1353 <pre> | 1392 <pre> |
1354 union→ : (X z u : HOD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z | 1393 union→ : (X z u : HOD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z |
1355 union→ X z u xx not = ⊥-elim ( not (od→ord u) ( record { proj1 = proj1 xx | 1394 union→ X z u xx not = ⊥-elim ( not (& u) ( record { proj1 = proj1 xx |
1356 ; proj2 = subst ( λ k → odef k (od→ord z)) (sym oiso) (proj2 xx) } )) | 1395 ; proj2 = subst ( λ k → odef k (& z)) (sym oiso) (proj2 xx) } )) |
1357 union← : (X z : HOD) (X∋z : Union X ∋ z) → ¬ ( (u : HOD ) → ¬ ((X ∋ u) ∧ (u ∋ z ))) | 1396 union← : (X z : HOD) (X∋z : Union X ∋ z) → ¬ ( (u : HOD ) → ¬ ((X ∋ u) ∧ (u ∋ z ))) |
1358 union← X z UX∋z = FExists _ lemma UX∋z where | 1397 union← X z UX∋z = FExists _ lemma UX∋z where |
1359 lemma : {y : Ordinal} → odef X y ∧ odef (ord→od y) (od→ord z) → ¬ ((u : HOD) → ¬ (X ∋ u) ∧ (u ∋ z)) | 1398 lemma : {y : Ordinal} → odef X y ∧ odef (* y) (& z) → ¬ ((u : HOD) → ¬ (X ∋ u) ∧ (u ∋ z)) |
1360 lemma {y} xx not = not (ord→od y) record { proj1 = subst ( λ k → odef X k ) (sym diso) (proj1 xx ) ; proj2 = proj2 xx } | 1399 lemma {y} xx not = not (* y) record { proj1 = subst ( λ k → odef X k ) (sym diso) (proj1 xx ) ; proj2 = proj2 xx } |
1361 | 1400 |
1362 </pre> | 1401 </pre> |
1363 where | 1402 where |
1364 <p> | 1403 <p> |
1365 | 1404 |
1373 </pre> | 1412 </pre> |
1374 which checks existence using contra-position. | 1413 which checks existence using contra-position. |
1375 <p> | 1414 <p> |
1376 | 1415 |
1377 <hr/> | 1416 <hr/> |
1378 <h2><a name="content054">Axiom of replacement</a></h2> | 1417 <h2><a name="content056">Axiom of replacement</a></h2> |
1379 We can replace the elements of a set by a function and it becomes a set. From the book, | 1418 We can replace the elements of a set by a function and it becomes a set. From the book, |
1380 <p> | 1419 <p> |
1381 | 1420 |
1382 <pre> | 1421 <pre> |
1383 ∀ x ∀ y ∀ z ( ( ψ ( x , y ) ∧ ψ ( x , z ) ) → y = z ) → ∀ X ∃ A ∀ y ( y ∈ A ↔ ∃ x ∈ X ψ ( x , y ) ) | 1422 ∀ x ∀ y ∀ z ( ( ψ ( x , y ) ∧ ψ ( x , z ) ) → y = z ) → ∀ X ∃ A ∀ y ( y ∈ A ↔ ∃ x ∈ X ψ ( x , y ) ) |
1402 negation form of existential quantifier in the definition. | 1441 negation form of existential quantifier in the definition. |
1403 <p> | 1442 <p> |
1404 | 1443 |
1405 <pre> | 1444 <pre> |
1406 in-codomain : (X : OD ) → ( ψ : OD → OD ) → OD | 1445 in-codomain : (X : OD ) → ( ψ : OD → OD ) → OD |
1407 in-codomain X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( def X y ∧ ( x ≡ od→ord (ψ (ord→od y ))))) } | 1446 in-codomain X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( def X y ∧ ( x ≡ & (ψ (* y ))))) } |
1408 | 1447 |
1409 </pre> | 1448 </pre> |
1410 in-codomain is a logical relation-ship, and it is written in OD. | 1449 in-codomain is a logical relation-ship, and it is written in OD. |
1411 <p> | 1450 <p> |
1412 | 1451 |
1413 <pre> | 1452 <pre> |
1414 Replace : HOD → (HOD → HOD) → HOD | 1453 Replace : HOD → (HOD → HOD) → HOD |
1415 Replace X ψ = record { od = record { def = λ x → (x o< sup-o X (λ y X∋y → od→ord (ψ (ord→od y)))) ∧ def (in-codomain X ψ) x } | 1454 Replace X ψ = record { od = record { def = λ x → (x o< sup-o X (λ y X∋y → & (ψ (* y)))) ∧ def (in-codomain X ψ) x } |
1416 ; odmax = rmax ; <odmax = rmax<} where | 1455 ; odmax = rmax ; <odmax = rmax<} where |
1417 rmax : Ordinal | 1456 rmax : Ordinal |
1418 rmax = sup-o X (λ y X∋y → od→ord (ψ (ord→od y))) | 1457 rmax = sup-o X (λ y X∋y → & (ψ (* y))) |
1419 rmax< : {y : Ordinal} → (y o< rmax) ∧ def (in-codomain X ψ) y → y o< rmax | 1458 rmax< : {y : Ordinal} → (y o< rmax) ∧ def (in-codomain X ψ) y → y o< rmax |
1420 rmax< lt = proj1 lt | 1459 rmax< lt = proj1 lt |
1421 | 1460 |
1422 </pre> | 1461 </pre> |
1423 The bbound of Replace is defined by supremum, that is, it is not limited in a limit ordinal of original ZF Set. | 1462 The bbound of Replace is defined by supremum, that is, it is not limited in a limit ordinal of original ZF Set. |
1424 <p> | 1463 <p> |
1425 Once we have a bound, validity of the axiom is an easy task to check the logical relation-ship. | 1464 Once we have a bound, validity of the axiom is an easy task to check the logical relation-ship. |
1426 <p> | 1465 <p> |
1427 | 1466 |
1428 <hr/> | 1467 <hr/> |
1429 <h2><a name="content055">Validity of Power Set Axiom</a></h2> | 1468 <h2><a name="content057">Validity of Power Set Axiom</a></h2> |
1430 The original Power Set Axiom is this. | 1469 The original Power Set Axiom is this. |
1431 <p> | 1470 <p> |
1432 | 1471 |
1433 <pre> | 1472 <pre> |
1434 ∀ X ∃ A ∀ t ( t ∈ A ↔ t ⊆ X ) ) | 1473 ∀ X ∃ A ∀ t ( t ∈ A ↔ t ⊆ X ) ) |
1482 | 1521 |
1483 <pre> | 1522 <pre> |
1484 Ord : ( a : Ordinal ) → OD | 1523 Ord : ( a : Ordinal ) → OD |
1485 Ord a = record { def = λ y → y o< a } | 1524 Ord a = record { def = λ y → y o< a } |
1486 Def : (A : OD ) → OD | 1525 Def : (A : OD ) → OD |
1487 Def A = Ord ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) | 1526 Def A = Ord ( sup-o ( λ x → & ( ZFSubset A (* x )) ) ) |
1488 | 1527 |
1489 </pre> | 1528 </pre> |
1490 This is slight larger than Power A, so we replace all elements x by A ∩ x (some of them may empty). | 1529 This is slight larger than Power A, so we replace all elements x by A ∩ x (some of them may empty). |
1491 <p> | 1530 <p> |
1492 | 1531 |
1493 <pre> | 1532 <pre> |
1494 Power : OD → OD | 1533 Power : OD → OD |
1495 Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x ) | 1534 Power A = Replace (Def (Ord (& A))) ( λ x → A ∩ x ) |
1496 | 1535 |
1497 </pre> | 1536 </pre> |
1498 Creating Power Set of Ordinals is rather easy, then we use replacement axiom on A ∩ x since we have this. | 1537 Creating Power Set of Ordinals is rather easy, then we use replacement axiom on A ∩ x since we have this. |
1499 <p> | 1538 <p> |
1500 | 1539 |
1517 power← : (A t : HOD) → ({x : HOD} → (t ∋ x → A ∋ x)) → Power A ∋ t | 1556 power← : (A t : HOD) → ({x : HOD} → (t ∋ x → A ∋ x)) → Power A ∋ t |
1518 | 1557 |
1519 </pre> | 1558 </pre> |
1520 | 1559 |
1521 <hr/> | 1560 <hr/> |
1522 <h2><a name="content056">Axiom of regularity, Axiom of choice, ε-induction</a></h2> | 1561 <h2><a name="content058">Axiom of regularity, Axiom of choice, ε-induction</a></h2> |
1523 | 1562 |
1524 <p> | 1563 <p> |
1525 Axiom of regularity requires non self intersectable elements (which is called minimum), if we | 1564 Axiom of regularity requires non self intersectable elements (which is called minimum), if we |
1526 replace it by a function, it becomes a choice function. It makes axiom of choice valid. | 1565 replace it by a function, it becomes a choice function. It makes axiom of choice valid. |
1527 <p> | 1566 <p> |
1529 choice also becomes valid. | 1568 choice also becomes valid. |
1530 <p> | 1569 <p> |
1531 | 1570 |
1532 <pre> | 1571 <pre> |
1533 minimal : (x : HOD ) → ¬ (x == od∅ )→ OD | 1572 minimal : (x : HOD ) → ¬ (x == od∅ )→ OD |
1534 x∋minimal : (x : HOD ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimal x ne ) ) | 1573 x∋minimal : (x : HOD ) → ( ne : ¬ (x == od∅ ) ) → def x ( & ( minimal x ne ) ) |
1535 minimal-1 : (x : HOD ) → ( ne : ¬ (x == od∅ ) ) → (y : HOD ) → ¬ ( def (minimal x ne) (od→ord y)) ∧ (def x (od→ord y) ) | 1574 minimal-1 : (x : HOD ) → ( ne : ¬ (x == od∅ ) ) → (y : HOD ) → ¬ ( def (minimal x ne) (& y)) ∧ (def x (& y) ) |
1536 | 1575 |
1537 </pre> | 1576 </pre> |
1538 We can avoid this using ε-induction (a predicate is valid on all set if the predicate is true on some element of set). | 1577 We can avoid this using ε-induction (a predicate is valid on all set if the predicate is true on some element of set). |
1539 Assuming law of exclude middle, they say axiom of regularity will be proved, but we haven't check it yet. | 1578 Assuming law of exclude middle, they say axiom of regularity will be proved, but we haven't check it yet. |
1540 <p> | 1579 <p> |
1564 </pre> | 1603 </pre> |
1565 It does not requires ∅ ∉ X . | 1604 It does not requires ∅ ∉ X . |
1566 <p> | 1605 <p> |
1567 | 1606 |
1568 <hr/> | 1607 <hr/> |
1569 <h2><a name="content057">Axiom of choice and Law of Excluded Middle</a></h2> | 1608 <h2><a name="content059">Axiom of choice and Law of Excluded Middle</a></h2> |
1570 In our model, since HOD has a mapping to Ordinals, it has evident order, which means well ordering theorem is valid, | 1609 In our model, since HOD has a mapping to Ordinals, it has evident order, which means well ordering theorem is valid, |
1571 but it don't have correct form of the axiom yet. They say well ordering axiom is equivalent to the axiom of choice, | 1610 but it don't have correct form of the axiom yet. They say well ordering axiom is equivalent to the axiom of choice, |
1572 but it requires law of the exclude middle. | 1611 but it requires law of the exclude middle. |
1573 <p> | 1612 <p> |
1574 Actually, it is well known to prove law of the exclude middle from axiom of choice in intuitionistic logic, and we can | 1613 Actually, it is well known to prove law of the exclude middle from axiom of choice in intuitionistic logic, and we can |
1584 We can prove axiom of choice from law excluded middle since we have TransFinite induction. So Axiom of choice | 1623 We can prove axiom of choice from law excluded middle since we have TransFinite induction. So Axiom of choice |
1585 and Law of Excluded Middle is equivalent in our mode. | 1624 and Law of Excluded Middle is equivalent in our mode. |
1586 <p> | 1625 <p> |
1587 | 1626 |
1588 <hr/> | 1627 <hr/> |
1589 <h2><a name="content058">Relation-ship among ZF axiom</a></h2> | 1628 <h2><a name="content060">Relation-ship among ZF axiom</a></h2> |
1590 <img src="fig/axiom-dependency.svg"> | 1629 <img src="fig/axiom-dependency.svg"> |
1591 | 1630 |
1592 <p> | 1631 <p> |
1593 | 1632 |
1594 <hr/> | 1633 <hr/> |
1595 <h2><a name="content059">Non constructive assumption in our model</a></h2> | 1634 <h2><a name="content061">Non constructive assumption in our model</a></h2> |
1596 mapping between HOD and Ordinals | 1635 mapping between HOD and Ordinals |
1597 <p> | 1636 <p> |
1598 | 1637 |
1599 <pre> | 1638 <pre> |
1600 od→ord : HOD → Ordinal | 1639 & : HOD → Ordinal |
1601 ord→od : Ordinal → OD | 1640 * : Ordinal → OD |
1602 oiso : {x : HOD } → ord→od ( od→ord x ) ≡ x | 1641 oiso : {x : HOD } → * ( & x ) ≡ x |
1603 diso : {x : Ordinal } → od→ord ( ord→od x ) ≡ x | 1642 diso : {x : Ordinal } → & ( * x ) ≡ x |
1604 c<→o< : {x y : HOD } → def y ( od→ord x ) → od→ord x o< od→ord y | 1643 c<→o< : {x y : HOD } → def y ( & x ) → & x o< & y |
1605 ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → od→ord y o< osuc (od→ord z) | 1644 ⊆→o≤ : {y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) |
1606 | 1645 |
1607 </pre> | 1646 </pre> |
1608 Equivalence on OD | 1647 Equivalence on OD |
1609 <p> | 1648 <p> |
1610 | 1649 |
1622 </pre> | 1661 </pre> |
1623 In order to have bounded ω, | 1662 In order to have bounded ω, |
1624 <p> | 1663 <p> |
1625 | 1664 |
1626 <pre> | 1665 <pre> |
1627 hod-ord< : {x : HOD} → od→ord x o< next (odmax x) | 1666 hod-ord< : {x : HOD} → & x o< next (odmax x) |
1628 | 1667 |
1629 </pre> | 1668 </pre> |
1630 Axiom of choice and strong axiom of regularity. | 1669 Axiom of choice and strong axiom of regularity. |
1631 <p> | 1670 <p> |
1632 | 1671 |
1633 <pre> | 1672 <pre> |
1634 minimal : (x : HOD ) → ¬ (x =h= od∅ )→ HOD | 1673 minimal : (x : HOD ) → ¬ (x =h= od∅ )→ HOD |
1635 x∋minimal : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → odef x ( od→ord ( minimal x ne ) ) | 1674 x∋minimal : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → odef x ( & ( minimal x ne ) ) |
1636 minimal-1 : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (od→ord y)) ∧ (odef x (od→ord y) ) | 1675 minimal-1 : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (& y)) ∧ (odef x (& y) ) |
1637 | 1676 |
1638 </pre> | 1677 </pre> |
1639 | 1678 |
1640 <hr/> | 1679 <hr/> |
1641 <h2><a name="content060">So it this correct?</a></h2> | 1680 <h2><a name="content062">V </a></h2> |
1642 | 1681 |
1643 <p> | 1682 <p> |
1683 The cumulative hierarchy | |
1684 <pre> | |
1685 V 0 := ∅ | |
1686 V α + 1 := P ( V α ) | |
1687 V α := ⋃ { V β | β < α } | |
1688 | |
1689 </pre> | |
1690 Using TransFinite induction | |
1691 <p> | |
1692 | |
1693 <pre> | |
1694 V : ( β : Ordinal ) → HOD | |
1695 V β = TransFinite V1 β where | |
1696 V1 : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD ) → HOD | |
1697 V1 x V0 with trio< x o∅ | |
1698 V1 x V0 | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a) | |
1699 V1 x V0 | tri≈ ¬a refl ¬c = Ord o∅ | |
1700 V1 x V0 | tri> ¬a ¬b c with Oprev-p x | |
1701 V1 x V0 | tri> ¬a ¬b c | yes p = Power ( V0 (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x p) <-osuc )) | |
1702 V1 x V0 | tri> ¬a ¬b c | no ¬p = | |
1703 record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) → odef (V0 y lt) x ) } ; | |
1704 odmax = x; <odmax = λ {x} lt → proj1 lt } | |
1705 | |
1706 </pre> | |
1707 In our system, clearly V ⊆ HOD。 | |
1708 <p> | |
1709 | |
1710 <hr/> | |
1711 <h2><a name="content063">L</a></h2> | |
1712 The constructible Sets | |
1713 <pre> | |
1714 L 0 := ∅ | |
1715 L α + 1 := Df (L α) -- Definable Power Set | |
1716 V α := ⋃ { L β | β < α } | |
1717 | |
1718 </pre> | |
1719 What is Df? In our system, Power x is definable by Sup. | |
1720 <p> | |
1721 | |
1722 <pre> | |
1723 record Definitions : Set (suc n) where | |
1724 field | |
1725 Definition : HOD → HOD | |
1726 open Definitions | |
1727 Df : Definitions → (x : HOD) → HOD | |
1728 Df D x = Power x ∩ Definition D x | |
1729 | |
1730 </pre> | |
1731 | |
1732 <hr/> | |
1733 <h2><a name="content064">L</a></h2> | |
1734 | |
1735 <p> | |
1736 | |
1737 <pre> | |
1738 L : ( β : Ordinal ) → Definitions → HOD | |
1739 L β D = TransFinite L1 β where | |
1740 L1 : (x : Ordinal ) → ( ( y : Ordinal) → y o< x → HOD ) → HOD | |
1741 L1 x L0 with trio< x o∅ | |
1742 L1 x L0 | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a) | |
1743 L1 x L0 | tri≈ ¬a refl ¬c = Ord o∅ | |
1744 L1 x L0 | tri> ¬a ¬b c with Oprev-p x | |
1745 L1 x L0 | tri> ¬a ¬b c | yes p = Df D ( L0 (Oprev.oprev p ) (subst (λ k → _ o< k) (Oprev.oprev=x p) <-osuc )) | |
1746 L1 x L0 | tri> ¬a ¬b c | no ¬p = | |
1747 record { od = record { def = λ y → (y o< x ) ∧ ((lt : y o< x ) → odef (L0 y lt) x ) } ; | |
1748 odmax = x; <odmax = λ {x} lt → proj1 lt } | |
1749 | |
1750 </pre> | |
1751 | |
1752 <hr/> | |
1753 <h2><a name="content065">V=L</a></h2> | |
1754 | |
1755 <p> | |
1756 | |
1757 <pre> | |
1758 V=L0 : Set (suc n) | |
1759 V=L0 = (x : Ordinal) → V x ≡ L x record { Definition = λ y → y } | |
1760 | |
1761 </pre> | |
1762 is obvious. Definitions should have some restrictions, such as it includes Nat. | |
1763 <p> | |
1764 | |
1765 <hr/> | |
1766 <h2><a name="content066">Some other ...</a></h2> | |
1767 | |
1768 <hr/> | |
1769 <h2><a name="content067">So it this correct?</a></h2> | |
1644 Our axiom are syntactically the same in the text book, but negations are slightly different. | 1770 Our axiom are syntactically the same in the text book, but negations are slightly different. |
1645 <p> | 1771 <p> |
1646 If we assumes excluded middle, these are exactly same. | 1772 If we assumes excluded middle, these are exactly same. |
1647 <p> | 1773 <p> |
1648 Even if we assumes excluded middle, intuitionistic logic itself remains consistent, but we cannot prove it. | 1774 Even if we assumes excluded middle, intuitionistic logic itself remains consistent, but we cannot prove it. |
1656 <p> | 1782 <p> |
1657 Several inference on our model or our axioms are basically parallel to the set theory text book, so it looks like correct. | 1783 Several inference on our model or our axioms are basically parallel to the set theory text book, so it looks like correct. |
1658 <p> | 1784 <p> |
1659 | 1785 |
1660 <hr/> | 1786 <hr/> |
1661 <h2><a name="content061">How to use Agda Set Theory</a></h2> | 1787 <h2><a name="content068">How to use Agda Set Theory</a></h2> |
1662 Assuming record ZF, classical set theory can be developed. If necessary, axiom of choice can be | 1788 Assuming record ZF, classical set theory can be developed. If necessary, axiom of choice can be |
1663 postulated or assuming law of excluded middle. | 1789 postulated or assuming law of excluded middle. |
1664 <p> | 1790 <p> |
1665 Instead, simply assumes non constructive assumption, various theory can be developed. We haven't check | 1791 Instead, simply assumes non constructive assumption, various theory can be developed. We haven't check |
1666 these assumptions are proved in record ZF, so we are not sure, these development is a result of ZF Set theory. | 1792 these assumptions are proved in record ZF, so we are not sure, these development is a result of ZF Set theory. |
1667 <p> | 1793 <p> |
1668 ZF record itself is not necessary, for example, topology theory without ZF can be possible. | 1794 ZF record itself is not necessary, for example, topology theory without ZF can be possible. |
1669 <p> | 1795 <p> |
1670 | 1796 |
1671 <hr/> | 1797 <hr/> |
1672 <h2><a name="content062">Topos and Set Theory</a></h2> | 1798 <h2><a name="content069">Topos and Set Theory</a></h2> |
1673 Topos is a mathematical structure in Category Theory, which is a Cartesian closed category which has a | 1799 Topos is a mathematical structure in Category Theory, which is a Cartesian closed category which has a |
1674 sub-object classifier. | 1800 sub-object classifier. |
1675 <p> | 1801 <p> |
1676 Topos itself is model of intuitionistic logic. | 1802 Topos itself is model of intuitionistic logic. |
1677 <p> | 1803 <p> |
1685 <p> | 1811 <p> |
1686 Our Agda model is a proof theoretic version of it. | 1812 Our Agda model is a proof theoretic version of it. |
1687 <p> | 1813 <p> |
1688 | 1814 |
1689 <hr/> | 1815 <hr/> |
1690 <h2><a name="content063">Cardinal number and Continuum hypothesis</a></h2> | 1816 <h2><a name="content070">Cardinal number and Continuum hypothesis</a></h2> |
1691 Axiom of choice is required to define cardinal number | 1817 Axiom of choice is required to define cardinal number |
1692 <p> | 1818 <p> |
1693 definition of cardinal number is not yet done | 1819 definition of cardinal number is not yet done |
1694 <p> | 1820 <p> |
1695 definition of filter is not yet done | 1821 definition of filter is not yet done |
1703 continuum-hyphotheis : (a : Ordinal) → Power (Ord a) ⊆ Ord (osuc a) | 1829 continuum-hyphotheis : (a : Ordinal) → Power (Ord a) ⊆ Ord (osuc a) |
1704 | 1830 |
1705 </pre> | 1831 </pre> |
1706 | 1832 |
1707 <hr/> | 1833 <hr/> |
1708 <h2><a name="content064">Filter</a></h2> | 1834 <h2><a name="content071">Filter</a></h2> |
1709 | 1835 |
1710 <p> | 1836 <p> |
1711 filter is a dual of ideal on boolean algebra or lattice. Existence on natural number | 1837 filter is a dual of ideal on boolean algebra or lattice. Existence on natural number |
1712 is depends on axiom of choice. | 1838 is depends on axiom of choice. |
1713 <p> | 1839 <p> |
1726 <p> | 1852 <p> |
1727 This may be simpler than classical forcing theory ( not yet done). | 1853 This may be simpler than classical forcing theory ( not yet done). |
1728 <p> | 1854 <p> |
1729 | 1855 |
1730 <hr/> | 1856 <hr/> |
1731 <h2><a name="content065">Programming Mathematics</a></h2> | 1857 <h2><a name="content072">Programming Mathematics</a></h2> |
1732 Mathematics is a functional programming in Agda where proof is a value of a variable. The mathematical | 1858 Mathematics is a functional programming in Agda where proof is a value of a variable. The mathematical |
1733 structure are | 1859 structure are |
1734 <p> | 1860 <p> |
1735 | 1861 |
1736 <pre> | 1862 <pre> |
1751 </pre> | 1877 </pre> |
1752 are proved in Agda. | 1878 are proved in Agda. |
1753 <p> | 1879 <p> |
1754 | 1880 |
1755 <hr/> | 1881 <hr/> |
1756 <h2><a name="content066">link</a></h2> | 1882 <h2><a name="content073">link</a></h2> |
1757 Summer school of foundation of mathematics (in Japanese)<br> <a href="https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/">https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/</a> | 1883 Summer school of foundation of mathematics (in Japanese)<br> <a href="https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/">https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/</a> |
1758 <p> | 1884 <p> |
1759 Foundation of axiomatic set theory (in Japanese)<br> <a href="https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/sakai0.pdf">https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/sakai0.pdf | 1885 Foundation of axiomatic set theory (in Japanese)<br> <a href="https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/sakai0.pdf">https://www.sci.shizuoka.ac.jp/~math/yorioka/ss2019/sakai0.pdf |
1760 </a> | 1886 </a> |
1761 <p> | 1887 <p> |
1816 <li><a href="#content040"> Pure logical axioms</a> | 1942 <li><a href="#content040"> Pure logical axioms</a> |
1817 <li><a href="#content041"> Axiom of Pair</a> | 1943 <li><a href="#content041"> Axiom of Pair</a> |
1818 <li><a href="#content042"> pair in OD</a> | 1944 <li><a href="#content042"> pair in OD</a> |
1819 <li><a href="#content043"> Validity of Axiom of Pair</a> | 1945 <li><a href="#content043"> Validity of Axiom of Pair</a> |
1820 <li><a href="#content044"> Equality of OD and Axiom of Extensionality </a> | 1946 <li><a href="#content044"> Equality of OD and Axiom of Extensionality </a> |
1821 <li><a href="#content045"> Validity of Axiom of Extensionality</a> | 1947 <li><a href="#content045"> The uniqueness of HOD</a> |
1822 <li><a href="#content046"> Axiom of infinity</a> | 1948 <li><a href="#content046"> Validity of Axiom of Extensionality</a> |
1823 <li><a href="#content047"> ω in HOD</a> | 1949 <li><a href="#content047"> Axiom of infinity</a> |
1824 <li><a href="#content048"> HOD Ordrinal mapping</a> | 1950 <li><a href="#content048"> ω in HOD</a> |
1825 <li><a href="#content049"> Possible restriction on HOD</a> | 1951 <li><a href="#content049"> HOD and Agda data structure</a> |
1826 <li><a href="#content050"> increment pase of address of HOD</a> | 1952 <li><a href="#content050"> HOD Ordrinal mapping</a> |
1827 <li><a href="#content051"> Non constructive assumptions so far</a> | 1953 <li><a href="#content051"> Possible restriction on HOD</a> |
1828 <li><a href="#content052"> Axiom which have negation form</a> | 1954 <li><a href="#content052"> increment pase of address of HOD</a> |
1829 <li><a href="#content053"> Union </a> | 1955 <li><a href="#content053"> Non constructive assumptions so far</a> |
1830 <li><a href="#content054"> Axiom of replacement</a> | 1956 <li><a href="#content054"> Axiom which have negation form</a> |
1831 <li><a href="#content055"> Validity of Power Set Axiom</a> | 1957 <li><a href="#content055"> Union </a> |
1832 <li><a href="#content056"> Axiom of regularity, Axiom of choice, ε-induction</a> | 1958 <li><a href="#content056"> Axiom of replacement</a> |
1833 <li><a href="#content057"> Axiom of choice and Law of Excluded Middle</a> | 1959 <li><a href="#content057"> Validity of Power Set Axiom</a> |
1834 <li><a href="#content058"> Relation-ship among ZF axiom</a> | 1960 <li><a href="#content058"> Axiom of regularity, Axiom of choice, ε-induction</a> |
1835 <li><a href="#content059"> Non constructive assumption in our model</a> | 1961 <li><a href="#content059"> Axiom of choice and Law of Excluded Middle</a> |
1836 <li><a href="#content060"> So it this correct?</a> | 1962 <li><a href="#content060"> Relation-ship among ZF axiom</a> |
1837 <li><a href="#content061"> How to use Agda Set Theory</a> | 1963 <li><a href="#content061"> Non constructive assumption in our model</a> |
1838 <li><a href="#content062"> Topos and Set Theory</a> | 1964 <li><a href="#content062"> V </a> |
1839 <li><a href="#content063"> Cardinal number and Continuum hypothesis</a> | 1965 <li><a href="#content063"> L</a> |
1840 <li><a href="#content064"> Filter</a> | 1966 <li><a href="#content064"> L</a> |
1841 <li><a href="#content065"> Programming Mathematics</a> | 1967 <li><a href="#content065"> V=L</a> |
1842 <li><a href="#content066"> link</a> | 1968 <li><a href="#content066"> Some other ...</a> |
1969 <li><a href="#content067"> So it this correct?</a> | |
1970 <li><a href="#content068"> How to use Agda Set Theory</a> | |
1971 <li><a href="#content069"> Topos and Set Theory</a> | |
1972 <li><a href="#content070"> Cardinal number and Continuum hypothesis</a> | |
1973 <li><a href="#content071"> Filter</a> | |
1974 <li><a href="#content072"> Programming Mathematics</a> | |
1975 <li><a href="#content073"> link</a> | |
1843 </ol> | 1976 </ol> |
1844 | 1977 |
1845 <hr/> Shinji KONO / Fri Jul 17 13:42:02 2020 | 1978 <hr/> Shinji KONO / Tue Aug 4 18:09:41 2020 |
1846 </body></html> | 1979 </body></html> |