comparison zf.agda @ 324:fbabb20f222e

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 04 Jul 2020 18:18:17 +0900
parents 6f10c47e4e7a
children 17adeeee0c2a
comparison
equal deleted inserted replaced
323:e228e96965f0 324:fbabb20f222e
47 power→ : ∀( A t : ZFSet ) → Power A ∋ t → ∀ {x} → t ∋ x → ¬ ¬ ( A ∋ x ) -- _⊆_ t A {x} 47 power→ : ∀( A t : ZFSet ) → Power A ∋ t → ∀ {x} → t ∋ x → ¬ ¬ ( A ∋ x ) -- _⊆_ t A {x}
48 power← : ∀( A t : ZFSet ) → ( ∀ {x} → _⊆_ t A {x}) → Power A ∋ t 48 power← : ∀( A t : ZFSet ) → ( ∀ {x} → _⊆_ t A {x}) → Power A ∋ t
49 -- extensionality : ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w ) 49 -- extensionality : ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w )
50 extensionality : { A B w : ZFSet } → ( (z : ZFSet) → ( A ∋ z ) ⇔ (B ∋ z) ) → ( A ∈ w ⇔ B ∈ w ) 50 extensionality : { A B w : ZFSet } → ( (z : ZFSet) → ( A ∋ z ) ⇔ (B ∋ z) ) → ( A ∈ w ⇔ B ∈ w )
51 -- regularity without minimum 51 -- regularity without minimum
52 ε-induction : { ψ : ZFSet → Set (suc m)} 52 ε-induction : { ψ : ZFSet → Set m}
53 → ( {x : ZFSet } → ({ y : ZFSet } → x ∋ y → ψ y ) → ψ x ) 53 → ( {x : ZFSet } → ({ y : ZFSet } → x ∋ y → ψ y ) → ψ x )
54 → (x : ZFSet ) → ψ x 54 → (x : ZFSet ) → ψ x
55 -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) ) 55 -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) )
56 infinity∅ : ∅ ∈ infinite 56 infinity∅ : ∅ ∈ infinite
57 infinity : ∀( x : ZFSet ) → x ∈ infinite → ( x ∪ { x }) ∈ infinite 57 infinity : ∀( x : ZFSet ) → x ∈ infinite → ( x ∪ { x }) ∈ infinite