Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison zf.agda @ 324:fbabb20f222e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 04 Jul 2020 18:18:17 +0900 |
parents | 6f10c47e4e7a |
children | 17adeeee0c2a |
comparison
equal
deleted
inserted
replaced
323:e228e96965f0 | 324:fbabb20f222e |
---|---|
47 power→ : ∀( A t : ZFSet ) → Power A ∋ t → ∀ {x} → t ∋ x → ¬ ¬ ( A ∋ x ) -- _⊆_ t A {x} | 47 power→ : ∀( A t : ZFSet ) → Power A ∋ t → ∀ {x} → t ∋ x → ¬ ¬ ( A ∋ x ) -- _⊆_ t A {x} |
48 power← : ∀( A t : ZFSet ) → ( ∀ {x} → _⊆_ t A {x}) → Power A ∋ t | 48 power← : ∀( A t : ZFSet ) → ( ∀ {x} → _⊆_ t A {x}) → Power A ∋ t |
49 -- extensionality : ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w ) | 49 -- extensionality : ∀ z ( z ∈ x ⇔ z ∈ y ) ⇒ ∀ w ( x ∈ w ⇔ y ∈ w ) |
50 extensionality : { A B w : ZFSet } → ( (z : ZFSet) → ( A ∋ z ) ⇔ (B ∋ z) ) → ( A ∈ w ⇔ B ∈ w ) | 50 extensionality : { A B w : ZFSet } → ( (z : ZFSet) → ( A ∋ z ) ⇔ (B ∋ z) ) → ( A ∈ w ⇔ B ∈ w ) |
51 -- regularity without minimum | 51 -- regularity without minimum |
52 ε-induction : { ψ : ZFSet → Set (suc m)} | 52 ε-induction : { ψ : ZFSet → Set m} |
53 → ( {x : ZFSet } → ({ y : ZFSet } → x ∋ y → ψ y ) → ψ x ) | 53 → ( {x : ZFSet } → ({ y : ZFSet } → x ∋ y → ψ y ) → ψ x ) |
54 → (x : ZFSet ) → ψ x | 54 → (x : ZFSet ) → ψ x |
55 -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) ) | 55 -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) ) |
56 infinity∅ : ∅ ∈ infinite | 56 infinity∅ : ∅ ∈ infinite |
57 infinity : ∀( x : ZFSet ) → x ∈ infinite → ( x ∪ { x }) ∈ infinite | 57 infinity : ∀( x : ZFSet ) → x ∈ infinite → ( x ∪ { x }) ∈ infinite |