diff ordinal.agda @ 180:11490a3170d4

new ordinal-definable
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 20 Jul 2019 14:05:32 +0900
parents 4724f7be00e3
children de3d87b7494f
line wrap: on
line diff
--- a/ordinal.agda	Sat Jul 20 08:21:54 2019 +0900
+++ b/ordinal.agda	Sat Jul 20 14:05:32 2019 +0900
@@ -224,6 +224,12 @@
    lemma1 (case1 x) = ¬a x
    lemma1 (case2 x) = ≡→¬d< x
 
+xo<ab : {n : Level} {oa ob : Ordinal {suc n}} → ( {ox : Ordinal {suc n}} → ox o< oa  → ox o< ob ) → oa o< osuc ob
+xo<ab {n}  {oa} {ob} a→b with trio< oa ob
+xo<ab {n}  {oa} {ob} a→b | tri< a ¬b ¬c = ordtrans a <-osuc
+xo<ab {n}  {oa} {ob} a→b | tri≈ ¬a refl ¬c = <-osuc
+xo<ab {n}  {oa} {ob} a→b | tri> ¬a ¬b c = ⊥-elim ( o<¬≡ refl (a→b c )  )
+
 maxα : {n : Level} →  Ordinal {suc n} →  Ordinal  → Ordinal
 maxα x y with trio< x y
 maxα x y | tri< a ¬b ¬c = y