Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff ordinal.agda @ 180:11490a3170d4
new ordinal-definable
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 20 Jul 2019 14:05:32 +0900 |
parents | 4724f7be00e3 |
children | de3d87b7494f |
line wrap: on
line diff
--- a/ordinal.agda Sat Jul 20 08:21:54 2019 +0900 +++ b/ordinal.agda Sat Jul 20 14:05:32 2019 +0900 @@ -224,6 +224,12 @@ lemma1 (case1 x) = ¬a x lemma1 (case2 x) = ≡→¬d< x +xo<ab : {n : Level} {oa ob : Ordinal {suc n}} → ( {ox : Ordinal {suc n}} → ox o< oa → ox o< ob ) → oa o< osuc ob +xo<ab {n} {oa} {ob} a→b with trio< oa ob +xo<ab {n} {oa} {ob} a→b | tri< a ¬b ¬c = ordtrans a <-osuc +xo<ab {n} {oa} {ob} a→b | tri≈ ¬a refl ¬c = <-osuc +xo<ab {n} {oa} {ob} a→b | tri> ¬a ¬b c = ⊥-elim ( o<¬≡ refl (a→b c ) ) + maxα : {n : Level} → Ordinal {suc n} → Ordinal → Ordinal maxα x y with trio< x y maxα x y | tri< a ¬b ¬c = y