Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff LEMC.agda @ 279:197e0b3d39dc
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 09 May 2020 16:41:40 +0900 |
parents | d9d3654baee1 |
children | a2991ce14ced |
line wrap: on
line diff
--- a/LEMC.agda Sat May 09 09:40:18 2020 +0900 +++ b/LEMC.agda Sat May 09 16:41:40 2020 +0900 @@ -84,4 +84,17 @@ eq→ = λ {x} lt → ⊥-elim (nn x (def→o< lt) lt) ; eq← = λ {x} lt → ⊥-elim ( ¬x<0 lt ) } + minimal-choice : (X : OD ) → ¬ (X == od∅) → choiced X + minimal-choice X ne = choice-func {!!} ne + minimal : (x : OD ) → ¬ (x == od∅ ) → OD + minimal x not = a-choice (minimal-choice x not ) + -- this should be ¬ (x == od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) + x∋minimal : (x : OD ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimal x ne ) ) + x∋minimal x ne = is-in (minimal-choice x ne ) + -- minimality (may proved by ε-induction ) + minimal-1 : (x : OD ) → ( ne : ¬ (x == od∅ ) ) → (y : OD ) → ¬ ( def (minimal x ne) (od→ord y)) ∧ (def x (od→ord y) ) + minimal-1 x ne y = {!!} + + +