Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff filter.agda @ 271:2169d948159b
fix incl
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 30 Dec 2019 23:45:59 +0900 |
parents | fc3d4bc1dc5e |
children | 985a1af11bce |
line wrap: on
line diff
--- a/filter.agda Mon Oct 07 01:28:11 2019 +0900 +++ b/filter.agda Mon Dec 30 23:45:59 2019 +0900 @@ -110,8 +110,8 @@ field filter : OD proper : ¬ ( filter ∋ od∅ ) - inL : { x : OD} → _⊆_ filter L {x} - filter1 : { p q : OD } → ( {x : OD} → _⊆_ q L {x} ) → filter ∋ p → ({ x : OD} → _⊆_ p q {x} ) → filter ∋ q + inL : filter ⊆ L + filter1 : { p q : OD } → q ⊆ L → filter ∋ p → p ⊆ q → filter ∋ q filter2 : { p q : OD } → filter ∋ p → filter ∋ q → filter ∋ (p ∩ q) open Filter @@ -135,6 +135,7 @@ generated-filter : {L : OD} → Filter L → (p : OD ) → Filter ( record { def = λ x → def L x ∨ (x ≡ od→ord p) } ) generated-filter {L} P p = record { + proper = {!!} ; filter = {!!} ; inL = {!!} ; filter1 = {!!} ; filter2 = {!!} } @@ -142,9 +143,9 @@ record Dense (P : OD ) : Set (suc n) where field dense : OD - incl : { x : OD} → _⊆_ dense P {x} + incl : dense ⊆ P dense-f : OD → OD - dense-p : { p x : OD} → P ∋ p → _⊆_ p (dense-f p) {x} + dense-p : { p : OD} → P ∋ p → p ⊆ (dense-f p) -- H(ω,2) = Power ( Power ω ) = Def ( Def ω))