Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff ordinal.agda @ 129:2a5519dcc167
ord power set
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 02 Jul 2019 09:28:26 +0900 |
parents | 870fe02c7a07 |
children | c30bc9f5bd0d |
line wrap: on
line diff
--- a/ordinal.agda Mon Jul 01 19:13:43 2019 +0900 +++ b/ordinal.agda Tue Jul 02 09:28:26 2019 +0900 @@ -216,17 +216,24 @@ lemma1 (case1 x) = ¬a x lemma1 (case2 x) = ≡→¬d< x -maxα : {n : Level} → Ordinal {n} → Ordinal → Ordinal -maxα x y with <-cmp (lv x) (lv y) +maxα : {n : Level} → Ordinal {suc n} → Ordinal → Ordinal +maxα x y with trio< x y maxα x y | tri< a ¬b ¬c = y maxα x y | tri> ¬a ¬b c = x -maxα x y | tri≈ ¬a refl ¬c = record { lv = lv x ; ord = maxαd (ord x) (ord y) } +maxα x y | tri≈ ¬a refl ¬c = x -minα : {n : Level} → Ordinal {n} → Ordinal → Ordinal -minα x y with <-cmp (lv x) (lv y) +minα : {n : Level} → Ordinal {suc n} → Ordinal → Ordinal +minα {n} x y with trio< {n} x y minα x y | tri< a ¬b ¬c = x minα x y | tri> ¬a ¬b c = y -minα x y | tri≈ ¬a refl ¬c = record { lv = lv x ; ord = minαd (ord x) (ord y) } +minα x y | tri≈ ¬a refl ¬c = x + +min1 : {n : Level} → {x y z : Ordinal {suc n} } → z o< x → z o< y → z o< minα x y +min1 {n} {x} {y} {z} z<x z<y with trio< {n} x y +min1 {n} {x} {y} {z} z<x z<y | tri< a ¬b ¬c = z<x +min1 {n} {x} {y} {z} z<x z<y | tri≈ ¬a refl ¬c = z<x +min1 {n} {x} {y} {z} z<x z<y | tri> ¬a ¬b c = z<y + -- -- max ( osuc x , osuc y ) --