Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff OPair.agda @ 360:2a8a51375e49
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 15 Jul 2020 08:42:30 +0900 |
parents | 5544f4921a44 |
children | 4cbcf71b09c4 |
line wrap: on
line diff
--- a/OPair.agda Tue Jul 14 15:02:59 2020 +0900 +++ b/OPair.agda Wed Jul 15 08:42:30 2020 +0900 @@ -136,3 +136,18 @@ p-pi2 : { x y : HOD } → (p : def ZFProduct (od→ord < x , y >) ) → π2 p ≡ y p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p))) + +_⊗_ : (A B : HOD) → HOD +A ⊗ B = record { od = record { def = λ x → def ZFProduct x ∧ ( { x : Ordinal } → (p : def ZFProduct x ) → checkAB p ) } ; + odmax = pmax; <odmax = <pmax } where + checkAB : { p : Ordinal } → def ZFProduct p → Set n + checkAB (pair x y) = odef A x ∧ odef B y + pmax : Ordinal + pmax = omax (odmax A) (odmax B) + <pmax : {y : Ordinal} → def ZFProduct y ∧ ({x : Ordinal} (p : def ZFProduct x) → checkAB p) → y o< omax (odmax A) (odmax B) + <pmax {y} = TransFinite {λ y → def ZFProduct y ∧ ({x : Ordinal} (p : def ZFProduct x) → checkAB p) → y o< omax (odmax A) (odmax B)} ind y where + ind : (x : Ordinal) + → ((y₁ : Ordinal) → y₁ o< x → def ZFProduct y₁ ∧ ({x₁ : Ordinal} (p : def ZFProduct x₁) → checkAB p) → y₁ o< (omax (odmax A) (odmax B))) + → def ZFProduct x ∧ ({x₁ : Ordinal} (p : def ZFProduct x₁) → checkAB p) → x o< (omax (HOD.odmax A) (HOD.odmax B)) + ind = {!!} +