Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff src/Tychonoff.agda @ 1298:2c34f2b554cf current
Replace and filter projection fix done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 03 Jun 2023 17:31:17 +0900 |
parents | 968feed7cf64 |
children | 47d3cc596d68 |
line wrap: on
line diff
--- a/src/Tychonoff.agda Sat Jun 03 08:13:50 2023 +0900 +++ b/src/Tychonoff.agda Sat Jun 03 17:31:17 2023 +0900 @@ -32,6 +32,7 @@ open ODC O open import filter O +open import filter-util O open import ZProduct O open import Topology O -- open import maximum-filter O @@ -421,367 +422,25 @@ --- --- FP is a P-projection of F, which is a ultra filter --- - isP→PxQ : {x : HOD} → (x⊆P : x ⊆ P ) → ZFP x Q ⊆ ZFP P Q - isP→PxQ {x} x⊆P (ab-pair p q) = ab-pair (x⊆P p) q - fx→px : {x : HOD } → filter F ∋ x → HOD - fx→px {x} fx = Replace' x ( λ y xy → * (zπ1 (F⊆pxq fx xy) )) {P} record { ≤COD = λ {x} lt {y} ly → ? } - fx→px1 : {p : HOD } {q : Ordinal } → odef Q q → (fp : filter F ∋ ZFP p Q ) → fx→px fp ≡ p - fx→px1 {p} {q} qq fp = ==→o≡ record { eq→ = ty20 ; eq← = ty22 } where - ty21 : {a b : Ordinal } → (pz : odef p a) → (qz : odef Q b) → ZFProduct P Q (& (* (& < * a , * b >))) - ty21 pz qz = F⊆pxq fp (subst (odef (ZFP p Q)) (sym &iso) (ab-pair pz qz )) - ty32 : {a b : Ordinal } → (pz : odef p a) → (qz : odef Q b) → zπ1 (ty21 pz qz) ≡ a - ty32 {a} {b} pz qz = ty33 (ty21 pz qz) (cong (&) *iso) where - ty33 : {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ1 p ≡ a - ty33 {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) - ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) a=c) - ty20 : {x : Ordinal} → odef (fx→px fp) x → odef p x - ty20 {x} record { z = _ ; az = ab-pair {a} {b} pz qz ; x=ψz = x=ψz } = subst (λ k → odef p k) a=x pz where - ty24 : * x ≡ * a - ty24 = begin - * x ≡⟨ cong (*) x=ψz ⟩ - _ ≡⟨ *iso ⟩ - * (zπ1 (F⊆pxq fp (subst (odef (ZFP p Q)) (sym &iso) (ab-pair pz qz)))) ≡⟨ cong (*) (ty32 pz qz) ⟩ - * a ∎ where open ≡-Reasoning - a=x : a ≡ x - a=x = subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (sym ty24)) - ty22 : {x : Ordinal} → odef p x → odef (fx→px fp) x - ty22 {x} px = record { z = _ ; az = ab-pair px qq ; x=ψz = subst₂ (λ j k → j ≡ k) &iso refl (cong (&) ty12 ) } where - ty12 : * x ≡ * (zπ1 (F⊆pxq fp (subst (odef (ZFP p Q)) (sym &iso) (ab-pair px qq )))) - ty12 = begin - * x ≡⟨ sym (cong (*) (ty32 px qq )) ⟩ - * (zπ1 (F⊆pxq fp (subst (odef (ZFP p Q)) (sym &iso) (ab-pair px qq )))) ∎ where open ≡-Reasoning - - -- Projection of F - FPSet : HOD - FPSet = Replace' (filter F) (λ x fx → Replace' x ( λ y xy → * (zπ1 (F⊆pxq fx xy) )) ? ) ? - - -- Projection ⁻¹ F (which is in F) is in FPSet - FPSet∋zpq : {q : HOD} → q ⊆ P → filter F ∋ ZFP q Q → FPSet ∋ q - FPSet∋zpq {q} q⊆P fq = record { z = _ ; az = fq ; x=ψz = sym (cong (&) ty10) } where - -- brain damaged one - ty11 : {y : HOD} {xy : (* (& (ZFP q Q))) ∋ y } → - * (zπ1 ( (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy))) ≡ * (zπ1 ( (F⊆pxq fq (subst (λ k → odef k (& y)) *iso xy) ))) - ty11 {y} {xy} = cong (λ k → * (zπ1 k)) ( HE.≅-to-≡ (∋-irr {ZFP P Q} a b )) where - a = F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy - b = F⊆pxq fq (subst (λ k → odef k (& y)) *iso xy) - ty10 : Replace' (* (& (ZFP q Q))) (λ y xy → * (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy))) ? ≡ q - ty10 = begin - Replace' (* (& (ZFP q Q))) (λ y xy → * (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy))) ? - ≡⟨ - cong (λ k → Replace' (* (& (ZFP q Q))) k ? ) (f-extensionality (λ y → (f-extensionality (λ xy → ty11 {y} {xy})))) - ⟩ - Replace' (* (& (ZFP q Q))) (λ y xy → * (zπ1 (F⊆pxq fq (subst (λ k → odef k (& y)) *iso xy) ))) ? - ≡⟨ Replace'-iso _ ? ? ? ⟩ - Replace' (ZFP q Q) ( λ y xy → * (zπ1 (F⊆pxq fq xy) )) ? ≡⟨ refl ⟩ - fx→px fq ≡⟨ fx→px1 aq fq ⟩ - q ∎ where open ≡-Reasoning - FPSet⊆PP : FPSet ⊆ Power P - FPSet⊆PP {x} record { z = z ; az = fz ; x=ψz = x=ψz } w xw with subst (λ k → odef k w) (trans (cong (*) x=ψz) *iso) xw - ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } - = subst (λ k → odef P k) (sym (trans x=ψz1 &iso)) - (zp1 (F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fz) (subst (λ k → odef (* z) k) (sym &iso) az1)) ) - X=F1 : (x : Ordinal) (p : HOD) (fx : odef (filter F) x) → Set n - X=F1 x p fx = & p ≡ & (Replace' (* x) (λ y xy → - * (zπ1 (f⊆L F - (subst (odef (filter F)) (sym &iso) fx) - (& y) (subst (λ k → OD.def (HOD.od k) (& y)) (sym *iso) xy)))) ? ) - x⊆pxq : {x : Ordinal} {p : HOD} (fx : odef (filter F) x) → X=F1 x p fx → * x ⊆ ZFP p Q - x⊆pxq {x} {p} fx x=ψz {w} xw with F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fx) xw - ... | ab-pair {a} {b} pw qw = ab-pair ty08 qw where - ty21 : ZFProduct P Q (& (* (& < * a , * b >))) - ty21 = subst (λ k → ZFProduct P Q k) (cong & (sym *iso)) (ab-pair pw qw) - ty32 : ZFProduct P Q (& (* (& < * a , * b >))) - ty32 = f⊆L F (subst (odef (filter F)) (sym &iso) fx) - (& (* (& < * a , * b >))) (subst (λ k → odef k - (& (* (& < * a , * b >)))) (sym *iso) (subst (odef (* x)) (sym &iso) xw)) - ty07 : odef (* x) (& < * a , * b >) - ty07 = xw - ty08 : odef p a - ty08 = subst (λ k → odef k a ) (subst₂ (λ j k → j ≡ k) *iso *iso (sym (cong (*) x=ψz))) - record { z = _ ; az = xw ; x=ψz = sym (trans &iso (ty33 ty32 (cong (&) *iso ))) } where - ty33 : {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ1 p ≡ a - ty33 {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) - ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) a=c) - p⊆P : {x : Ordinal} {p : HOD} (fx : odef (filter F) x) → X=F1 x p fx → p ⊆ P - p⊆P {x} {p} fx x=ψz {w} pw with subst (λ k → odef k w) (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) x=ψz)) pw - ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef P k) (sym (trans x=ψz1 &iso)) - (zp1 (F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fx) (subst (λ k → odef (* x) k) (sym &iso) az1 )) ) FP : Filter {Power P} {P} (λ x → x) - FP = record { filter = FPSet ; f⊆L = FPSet⊆PP ; filter1 = ty01 ; filter2 = ty02 } where - ty01 : {p q : HOD} → Power P ∋ q → FPSet ∋ p → p ⊆ q → FPSet ∋ q - ty01 {p} {q} Pq record { z = x ; az = fx ; x=ψz = x=ψz } p⊆q = FPSet∋zpq q⊆P (ty10 ty05 ty06 ) - where - -- p ≡ (Replace' (* x) (λ y xy → (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) fx) xy)) - -- x = ( px , qx ) , px ⊆ q - ty03 : Power (ZFP P Q) ∋ ZFP q Q - ty03 z zpq = isP→PxQ {* (& q)} (Pq _) ( subst (λ k → odef k z ) (trans *iso (cong (λ k → ZFP k Q) (sym *iso))) zpq ) - q⊆P : q ⊆ P - q⊆P {w} qw = Pq _ (subst (λ k → odef k w ) (sym *iso) qw ) - ty05 : filter F ∋ ZFP p Q - ty05 = filter1 F (λ z wz → isP→PxQ (p⊆P fx x=ψz) (subst (λ k → odef k z) *iso wz)) (subst (λ k → odef (filter F) k) (sym &iso) fx) (x⊆pxq fx x=ψz) - ty06 : ZFP p Q ⊆ ZFP q Q - ty06 (ab-pair wp wq ) = ab-pair (p⊆q wp) wq - ty10 : filter F ∋ ZFP p Q → ZFP p Q ⊆ ZFP q Q → filter F ∋ ZFP q Q - ty10 fzp zp⊆zq = filter1 F ty03 fzp zp⊆zq - ty02 : {p q : HOD} → FPSet ∋ p → FPSet ∋ q → Power P ∋ (p ∩ q) → FPSet ∋ (p ∩ q) - ty02 {p} {q} record { z = zp ; az = fzp ; x=ψz = x=ψzp } - record { z = zq ; az = fzq ; x=ψz = x=ψzq } Ppq - = FPSet∋zpq (λ {z} xz → Ppq z (subst (λ k → odef k z) (sym *iso) xz )) ty50 where - ty54 : Power (ZFP P Q) ∋ (ZFP p Q ∩ ZFP q Q) - ty54 z xz = subst (λ k → ZFProduct P Q k ) (zp-iso pqz) (ab-pair pqz1 pqz2 ) where - pqz : odef (ZFP (p ∩ q) Q) z - pqz = subst (λ k → odef k z ) (trans *iso (sym (proj1 ZFP∩) )) xz - pqz1 : odef P (zπ1 pqz) - pqz1 = p⊆P fzp x=ψzp (proj1 (zp1 pqz)) - pqz2 : odef Q (zπ2 pqz) - pqz2 = zp2 pqz - ty53 : filter F ∋ ZFP p Q - ty53 = filter1 F (λ z wz → isP→PxQ (p⊆P fzp x=ψzp) - (subst (λ k → odef k z) *iso wz)) - (subst (λ k → odef (filter F) k) (sym &iso) fzp ) (x⊆pxq fzp x=ψzp) - ty52 : filter F ∋ ZFP q Q - ty52 = filter1 F (λ z wz → isP→PxQ (p⊆P fzq x=ψzq) - (subst (λ k → odef k z) *iso wz)) - (subst (λ k → odef (filter F) k) (sym &iso) fzq ) (x⊆pxq fzq x=ψzq) - ty51 : filter F ∋ ( ZFP p Q ∩ ZFP q Q ) - ty51 = filter2 F ty53 ty52 ty54 - ty50 : filter F ∋ ZFP (p ∩ q) Q - ty50 = subst (λ k → filter F ∋ k ) (sym (proj1 ZFP∩)) ty51 + FP = Filter-Proj1 {P} {Q} is-apq F UFP : ultra-filter FP - UFP = record { proper = ty61 ; ultra = ty60 } where - ty61 : ¬ (FPSet ∋ od∅) - ty61 record { z = z ; az = az ; x=ψz = x=ψz } = ultra-filter.proper UF ty62 where - ty63 : {x : Ordinal} → ¬ odef (* z) x - ty63 {x} zx with x⊆pxq az x=ψz zx - ... | ab-pair xp xq = ¬x<0 xp - ty62 : odef (filter F) (& od∅) - ty62 = subst (λ k → odef (filter F) k ) (trans (sym &iso) (cong (&) (¬x∋y→x≡od∅ ty63)) ) az - ty60 : {p : HOD} → Power P ∋ p → Power P ∋ (P \ p) → (FPSet ∋ p) ∨ (FPSet ∋ (P \ p)) - ty60 {p} Pp Pnp with ultra-filter.ultra UF {ZFP p Q} - (λ z xz → isP→PxQ (λ {x} lt → Pp _ (subst (λ k → odef k x) (sym *iso) lt)) (subst (λ k → odef k z) *iso xz)) - (λ z xz → proj1 (subst (λ k → odef k z) *iso xz )) - ... | case1 fp = case1 (FPSet∋zpq (λ {z} xz → Pp z (subst (λ k → odef k z) (sym *iso) xz )) fp ) - ... | case2 fnp = case2 (FPSet∋zpq (λ pp → proj1 pp) (subst (λ k → odef (filter F) k) (cong (&) (proj1 ZFP\Q)) fnp )) + UFP = Filter-Proj1-UF {P} {Q} is-apq F UF uflp : UFLP TP FP UFP uflp = FIP→UFLP TP (Compact→FIP TP CP) FP UFP -- FPSet is in Projection ⁻¹ F - FPSet⊆F : {x : Ordinal } → odef FPSet x → odef (filter F) (& (ZFP (* x) Q)) - FPSet⊆F {x} record { z = z ; az = az ; x=ψz = x=ψz } = filter1 F ty80 (subst (λ k → odef (filter F) k) (sym &iso) az) ty71 where - Rx : HOD - Rx = Replace' (* z) (λ y xy → * (zπ1 (F⊆pxq (subst (odef (filter F)) (sym &iso) az) xy))) ? - RxQ∋z : * z ⊆ ZFP Rx Q - RxQ∋z {w} zw = subst (λ k → ZFProduct Rx Q k ) ty70 ( ab-pair record { z = w ; az = zw ; x=ψz = refl } (zp2 b )) where - a = F⊆pxq (subst (odef (filter F)) (sym &iso) az) (subst (odef (* z)) (sym &iso) zw) - b = subst (λ k → odef (ZFP P Q) k ) (sym &iso) ( f⊆L F az w zw ) - ty73 : & (* (zπ1 a)) ≡ zπ1 b - ty73 = begin - & (* (zπ1 a)) ≡⟨ &iso ⟩ - zπ1 a ≡⟨ cong zπ1 (HE.≅-to-≡ (∋-irr {ZFP _ _ } a b)) ⟩ - zπ1 b ∎ where open ≡-Reasoning - ty70 : & < * (& (* (zπ1 a))) , * (zπ2 b) > ≡ w - ty70 with zp-iso (subst (λ k → odef (ZFP P Q) k) (sym &iso) (f⊆L F az _ zw )) - ... | eq = trans (cong₂ (λ j k → & < * j , k > ) ty73 refl ) (trans eq &iso ) - ty71 : * z ⊆ ZFP (* x) Q - ty71 = subst (λ k → * z ⊆ ZFP k Q) ty72 RxQ∋z where - ty72 : Rx ≡ * x - ty72 = begin - Rx ≡⟨ sym *iso ⟩ - * (& Rx) ≡⟨ cong (*) (sym x=ψz ) ⟩ - * x ∎ where open ≡-Reasoning - ty80 : Power (ZFP P Q) ∋ ZFP (* x) Q - ty80 y yx = isP→PxQ ty81 (subst (λ k → odef k y ) *iso yx ) where - ty81 : * x ⊆ P - ty81 {w} xw with subst (λ k → odef k w) (trans (cong (*) x=ψz ) *iso ) xw - ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef P k) (sym ty84) ty87 where - a = f⊆L F (subst (odef (filter F)) (sym &iso) az) (& (* z1)) - (subst (λ k → odef k (& (* z1))) (sym *iso) (subst (odef (* z)) (sym &iso) az1)) - b = subst (λ k → odef (ZFP P Q) k ) (sym &iso) (f⊆L F az _ az1 ) - ty87 : odef P (zπ1 b) - ty87 = zp1 b - ty84 : w ≡ (zπ1 b) - ty84 = begin - w ≡⟨ trans x=ψz1 &iso ⟩ - zπ1 a ≡⟨ cong zπ1 (HE.≅-to-≡ (∋-irr {ZFP _ _ } a b )) ⟩ - zπ1 b ∎ where open ≡-Reasoning + FPSet⊆F1 : {x : Ordinal } → odef (filter FP) x → odef (filter F) (& (ZFP (* x) Q)) + FPSet⊆F1 {x} fpx = FPSet⊆F is-apq F fpx - -- copy and pasted, sorry - -- - isQ→PxQ : {x : HOD} → (x⊆Q : x ⊆ Q ) → ZFP P x ⊆ ZFP P Q - isQ→PxQ {x} x⊆Q (ab-pair p q) = ab-pair p (x⊆Q q) - fx→qx : {x : HOD } → filter F ∋ x → HOD - fx→qx {x} fx = Replace' x ( λ y xy → * (zπ2 (F⊆pxq fx xy) )) ? - fx→qx1 : {q : HOD } {p : Ordinal } → odef P p → (fq : filter F ∋ ZFP P q ) → fx→qx fq ≡ q - fx→qx1 {q} {p} qq fq = ==→o≡ record { eq→ = ty20 ; eq← = ty22 } where - ty21 : {a b : Ordinal } → (qz : odef q b) → (pz : odef P a) → ZFProduct P Q (& (* (& < * a , * b >))) - ty21 qz pz = F⊆pxq fq (subst (odef (ZFP P q)) (sym &iso) (ab-pair pz qz )) - ty32 : {a b : Ordinal } → (qz : odef q b) → (pz : odef P a) → zπ2 (ty21 qz pz) ≡ b - ty32 {a} {b} pz qz = ty33 (ty21 pz qz) (cong (&) *iso) where - ty33 : {a b x : Ordinal } ( q : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ2 q ≡ b - ty33 {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) - ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) b=d) - ty20 : {x : Ordinal} → odef (fx→qx fq) x → odef q x - ty20 {x} record { z = _ ; az = ab-pair {a} {b} pz qz ; x=ψz = x=ψz } = subst (λ k → odef q k) b=x qz where - ty24 : * x ≡ * b - ty24 = begin - * x ≡⟨ cong (*) x=ψz ⟩ - _ ≡⟨ *iso ⟩ - * (zπ2 (F⊆pxq fq (subst (odef (ZFP P q)) (sym &iso) (ab-pair pz qz)))) ≡⟨ cong (*) (ty32 qz pz) ⟩ - * b ∎ where open ≡-Reasoning - b=x : b ≡ x - b=x = subst₂ (λ j k → j ≡ k ) &iso &iso (cong (&) (sym ty24)) - ty22 : {x : Ordinal} → odef q x → odef (fx→qx fq) x - ty22 {x} qx = record { z = _ ; az = ab-pair qq qx ; x=ψz = subst₂ (λ j k → j ≡ k) &iso refl (cong (&) ty12 ) } where - ty12 : * x ≡ * (zπ2 (F⊆pxq fq (subst (odef (ZFP P q)) (sym &iso) (ab-pair qq qx )))) - ty12 = begin - * x ≡⟨ sym (cong (*) (ty32 qx qq )) ⟩ - * (zπ2 (F⊆pxq fq (subst (odef (ZFP P q)) (sym &iso) (ab-pair qq qx )))) ∎ where open ≡-Reasoning - FQSet : HOD - FQSet = Replace' (filter F) (λ x fx → Replace' x ( λ y xy → * (zπ2 (F⊆pxq fx xy) )) ? ) ? - FQSet∋zpq : {q : HOD} → q ⊆ Q → filter F ∋ ZFP P q → FQSet ∋ q - FQSet∋zpq {q} q⊆P fq = record { z = _ ; az = fq ; x=ψz = sym (cong (&) ty10) } where - -- brain damaged one - ty11 : {y : HOD} {xy : (* (& (ZFP P q ))) ∋ y } → - * (zπ2 ( (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy))) ≡ * (zπ2 ( (F⊆pxq fq (subst (λ k → odef k (& y)) *iso xy) ))) - ty11 {y} {xy} = cong (λ k → * (zπ2 k)) ( HE.≅-to-≡ (∋-irr {ZFP P Q} a b )) where - a = F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy - b = F⊆pxq fq (subst (λ k → odef k (& y)) *iso xy) - ty10 : Replace' (* (& (ZFP P q ))) (λ y xy → * (zπ2 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy))) ? ≡ q - ty10 = begin - Replace' (* (& (ZFP P q))) (λ y xy → * (zπ2 (F⊆pxq (subst (odef (filter F)) (sym &iso) fq) xy))) ? - ≡⟨ Replace'-iso _ ? ? ? ⟩ - Replace' (ZFP P q ) ( λ y xy → * (zπ2 (F⊆pxq fq xy) )) ? ≡⟨ refl ⟩ - fx→qx fq ≡⟨ fx→qx1 ap fq ⟩ - q ∎ where open ≡-Reasoning - FQSet⊆PP : FQSet ⊆ Power Q - FQSet⊆PP {x} record { z = z ; az = fz ; x=ψz = x=ψz } w xw with subst (λ k → odef k w) (trans (cong (*) x=ψz) *iso) xw - ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } - = subst (λ k → odef Q k) (sym (trans x=ψz1 &iso)) - (zp2 (F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fz) (subst (λ k → odef (* z) k) (sym &iso) az1)) ) - X=F2 : (x : Ordinal) (q : HOD) (fx : odef (filter F) x) → Set n - X=F2 x q fx = & q ≡ & (Replace' (* x) (λ y xy → - * (zπ2 (f⊆L F - (subst (odef (filter F)) (sym &iso) fx) - (& y) (subst (λ k → OD.def (HOD.od k) (& y)) (sym *iso) xy)))) ? ) - x⊆qxq : {x : Ordinal} {q : HOD} (fx : odef (filter F) x) → X=F2 x q fx → * x ⊆ ZFP P q - x⊆qxq {x} {p} fx x=ψz {w} xw with F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fx) xw - ... | ab-pair {a} {b} pw qw = ab-pair pw ty08 where - ty21 : ZFProduct P Q (& (* (& < * a , * b >))) - ty21 = subst (λ k → ZFProduct P Q k) (cong & (sym *iso)) (ab-pair pw qw) - ty32 : ZFProduct P Q (& (* (& < * a , * b >))) - ty32 = f⊆L F (subst (odef (filter F)) (sym &iso) fx) - (& (* (& < * a , * b >))) (subst (λ k → odef k - (& (* (& < * a , * b >)))) (sym *iso) (subst (odef (* x)) (sym &iso) xw)) - ty07 : odef (* x) (& < * a , * b >) - ty07 = xw - ty08 : odef p b - ty08 = subst (λ k → odef k b ) (subst₂ (λ j k → j ≡ k) *iso *iso (sym (cong (*) x=ψz))) - record { z = _ ; az = xw ; x=ψz = sym (trans &iso (ty33 ty32 (cong (&) *iso ))) } where - ty33 : {a b x : Ordinal } ( p : ZFProduct P Q x ) → x ≡ & < * a , * b > → zπ2 p ≡ b - ty33 {a} {b} (ab-pair {c} {d} zp zq) eq with prod-≡ (subst₂ (λ j k → j ≡ k) *iso *iso (cong (*) eq)) - ... | ⟪ a=c , b=d ⟫ = subst₂ (λ j k → j ≡ k) &iso &iso (cong (&) b=d) - q⊆Q : {x : Ordinal} {p : HOD} (fx : odef (filter F) x) → X=F2 x p fx → p ⊆ Q - q⊆Q {x} {p} fx x=ψz {w} pw with subst (λ k → odef k w) (subst₂ (λ j k → j ≡ k ) *iso *iso (cong (*) x=ψz)) pw - ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef Q k) (sym (trans x=ψz1 &iso)) - (zp2 (F⊆pxq (subst (λ k → odef (filter F) k) (sym &iso) fx) (subst (λ k → odef (* x) k) (sym &iso) az1 )) ) FQ : Filter {Power Q} {Q} (λ x → x) - FQ = record { filter = FQSet ; f⊆L = FQSet⊆PP ; filter1 = ty01 ; filter2 = ty02 } where - ty01 : {p q : HOD} → Power Q ∋ q → FQSet ∋ p → p ⊆ q → FQSet ∋ q - ty01 {p} {q} Pq record { z = x ; az = fx ; x=ψz = x=ψz } p⊆q = FQSet∋zpq q⊆P (ty10 ty05 ty06 ) - where - -- p ≡ (Replace' (* x) (λ y xy → (zπ2 (F⊆qxq (subst (odef (filter F)) (sym &iso) fx) xy)) - -- x = ( px , qx ) , qx ⊆ q - ty03 : Power (ZFP P Q) ∋ ZFP P q - ty03 z zpq = isQ→PxQ {* (& q)} (Pq _) ( subst (λ k → odef k z ) (trans *iso (cong (λ k → ZFP P k ) (sym *iso))) zpq ) - q⊆P : q ⊆ Q - q⊆P {w} qw = Pq _ (subst (λ k → odef k w ) (sym *iso) qw ) - ty05 : filter F ∋ ZFP P p - ty05 = filter1 F (λ z wz → isQ→PxQ (q⊆Q fx x=ψz) (subst (λ k → odef k z) *iso wz)) (subst (λ k → odef (filter F) k) (sym &iso) fx) (x⊆qxq fx x=ψz) - ty06 : ZFP P p ⊆ ZFP P q - ty06 (ab-pair wp wq ) = ab-pair wp (p⊆q wq) - ty10 : filter F ∋ ZFP P p → ZFP P p ⊆ ZFP P q → filter F ∋ ZFP P q - ty10 fzp zp⊆zq = filter1 F ty03 fzp zp⊆zq - ty02 : {p q : HOD} → FQSet ∋ p → FQSet ∋ q → Power Q ∋ (p ∩ q) → FQSet ∋ (p ∩ q) - ty02 {p} {q} record { z = zp ; az = fzp ; x=ψz = x=ψzp } - record { z = zq ; az = fzq ; x=ψz = x=ψzq } Ppq - = FQSet∋zpq (λ {z} xz → Ppq z (subst (λ k → odef k z) (sym *iso) xz )) ty50 where - ty54 : Power (ZFP P Q) ∋ (ZFP P p ∩ ZFP P q ) - ty54 z xz = subst (λ k → ZFProduct P Q k ) (zp-iso pqz) (ab-pair pqz1 pqz2 ) where - pqz : odef (ZFP P (p ∩ q) ) z - pqz = subst (λ k → odef k z ) (trans *iso (sym (proj2 ZFP∩) )) xz - pqz1 : odef P (zπ1 pqz) - pqz1 = zp1 pqz - pqz2 : odef Q (zπ2 pqz) - pqz2 = q⊆Q fzp x=ψzp (proj1 (zp2 pqz)) - ty53 : filter F ∋ ZFP P p - ty53 = filter1 F (λ z wz → isQ→PxQ (q⊆Q fzp x=ψzp) - (subst (λ k → odef k z) *iso wz)) - (subst (λ k → odef (filter F) k) (sym &iso) fzp ) (x⊆qxq fzp x=ψzp) - ty52 : filter F ∋ ZFP P q - ty52 = filter1 F (λ z wz → isQ→PxQ (q⊆Q fzq x=ψzq) - (subst (λ k → odef k z) *iso wz)) - (subst (λ k → odef (filter F) k) (sym &iso) fzq ) (x⊆qxq fzq x=ψzq) - ty51 : filter F ∋ ( ZFP P p ∩ ZFP P q ) - ty51 = filter2 F ty53 ty52 ty54 - ty50 : filter F ∋ ZFP P (p ∩ q) - ty50 = subst (λ k → filter F ∋ k ) (sym (proj2 ZFP∩)) ty51 + FQ = Filter-Proj2 {P} {Q} is-apq F UFQ : ultra-filter FQ - UFQ = record { proper = ty61 ; ultra = ty60 } where - ty61 : ¬ (FQSet ∋ od∅) - ty61 record { z = z ; az = az ; x=ψz = x=ψz } = ultra-filter.proper UF ty62 where - ty63 : {x : Ordinal} → ¬ odef (* z) x - ty63 {x} zx with x⊆qxq az x=ψz zx - ... | ab-pair xp xq = ¬x<0 xq - ty62 : odef (filter F) (& od∅) - ty62 = subst (λ k → odef (filter F) k ) (trans (sym &iso) (cong (&) (¬x∋y→x≡od∅ ty63)) ) az - ty60 : {p : HOD} → Power Q ∋ p → Power Q ∋ (Q \ p) → (FQSet ∋ p) ∨ (FQSet ∋ (Q \ p)) - ty60 {q} Pp Pnp with ultra-filter.ultra UF {ZFP P q} - (λ z xz → isQ→PxQ (λ {x} lt → Pp _ (subst (λ k → odef k x) (sym *iso) lt)) (subst (λ k → odef k z) *iso xz)) - (λ z xz → proj1 (subst (λ k → odef k z) *iso xz )) - ... | case1 fq = case1 (FQSet∋zpq (λ {z} xz → Pp z (subst (λ k → odef k z) (sym *iso) xz )) fq ) - ... | case2 fnp = case2 (FQSet∋zpq (λ pp → proj1 pp) (subst (λ k → odef (filter F) k) (cong (&) (proj2 ZFP\Q)) fnp )) - + UFQ = Filter-Proj2-UF {P} {Q} is-apq F UF -- FQSet is in Projection ⁻¹ F - FQSet⊆F : {x : Ordinal } → odef FQSet x → odef (filter F) (& (ZFP P (* x) )) - FQSet⊆F {x} record { z = z ; az = az ; x=ψz = x=ψz } = filter1 F ty80 (subst (λ k → odef (filter F) k) (sym &iso) az) ty71 where - Rx : HOD - Rx = Replace' (* z) (λ y xy → * (zπ2 (F⊆pxq (subst (odef (filter F)) (sym &iso) az) xy))) ? - PxRx∋z : * z ⊆ ZFP P Rx - PxRx∋z {w} zw = subst (λ k → ZFProduct P Rx k ) ty70 ( ab-pair (zp1 b) record { z = w ; az = zw ; x=ψz = refl } ) where - a = F⊆pxq (subst (odef (filter F)) (sym &iso) az) (subst (odef (* z)) (sym &iso) zw) - b = subst (λ k → odef (ZFP P Q) k ) (sym &iso) ( f⊆L F az w zw ) - ty73 : & (* (zπ2 a)) ≡ zπ2 b - ty73 = begin - & (* (zπ2 a)) ≡⟨ &iso ⟩ - zπ2 a ≡⟨ cong zπ2 (HE.≅-to-≡ (∋-irr {ZFP _ _ } a b)) ⟩ - zπ2 b ∎ where open ≡-Reasoning - ty70 : & < * (zπ1 b) , * (& (* (zπ2 a))) > ≡ w - ty70 with zp-iso (subst (λ k → odef (ZFP P Q) k) (sym &iso) (f⊆L F az _ zw )) - ... | eq = trans (cong₂ (λ j k → & < j , * k > ) refl ty73 ) (trans eq &iso ) - ty71 : * z ⊆ ZFP P (* x) - ty71 = subst (λ k → * z ⊆ ZFP P k ) ty72 PxRx∋z where - ty72 : Rx ≡ * x - ty72 = begin - Rx ≡⟨ sym *iso ⟩ - * (& Rx) ≡⟨ cong (*) (sym x=ψz ) ⟩ - * x ∎ where open ≡-Reasoning - ty80 : Power (ZFP P Q) ∋ ZFP P (* x) - ty80 y yx = isQ→PxQ ty81 (subst (λ k → odef k y ) *iso yx ) where - ty81 : * x ⊆ Q - ty81 {w} xw with subst (λ k → odef k w) (trans (cong (*) x=ψz ) *iso ) xw - ... | record { z = z1 ; az = az1 ; x=ψz = x=ψz1 } = subst (λ k → odef Q k) (sym ty84) ty87 where - a = f⊆L F (subst (odef (filter F)) (sym &iso) az) (& (* z1)) - (subst (λ k → odef k (& (* z1))) (sym *iso) (subst (odef (* z)) (sym &iso) az1)) - b = subst (λ k → odef (ZFP P Q) k ) (sym &iso) (f⊆L F az _ az1 ) - ty87 : odef Q (zπ2 b) - ty87 = zp2 b - ty84 : w ≡ (zπ2 b) - ty84 = begin - w ≡⟨ trans x=ψz1 &iso ⟩ - zπ2 a ≡⟨ cong zπ2 (HE.≅-to-≡ (∋-irr {ZFP _ _ } a b )) ⟩ - zπ2 b ∎ where open ≡-Reasoning - + FQSet⊆F1 : {x : Ordinal } → odef (filter FQ) x → odef (filter F) (& (ZFP P (* x) )) + FQSet⊆F1 {x} fpx = FQSet⊆F is-apq F fpx uflq : UFLP TQ FQ UFQ uflq = FIP→UFLP TQ (Compact→FIP TQ CQ) FQ UFQ @@ -826,7 +485,7 @@ fp∋b = UFLP.is-limit uflp record { u = _ ; ou = BaseP.op px ; ux = px∋limit ; v⊆P = λ {x} lt → os⊆L TP (subst (λ k → odef (OS TP) k) (sym &iso) (BaseP.op px)) lt ; u⊆v = λ x → x } f∋b : odef (filter F) (& (ZFP (* (BaseP.p px)) Q)) - f∋b = FPSet⊆F (subst (λ k → odef (filter FP) k ) &iso fp∋b ) + f∋b = FPSet⊆F1 (subst (λ k → odef (filter FP) k ) &iso fp∋b ) F∋base {b} (gi (case2 qx)) bl = subst (λ k → odef (filter F) k) (sym (BaseQ.prod qx)) f∋b where isl00 : odef (ZFP P (* (BaseQ.q qx))) lim isl00 = subst (λ k → odef k lim ) (trans (cong (*) (BaseQ.prod qx)) *iso ) bl @@ -840,7 +499,7 @@ fp∋b = UFLP.is-limit uflq record { u = _ ; ou = BaseQ.oq qx ; ux = qx∋limit ; v⊆P = λ {x} lt → os⊆L TQ (subst (λ k → odef (OS TQ) k) (sym &iso) (BaseQ.oq qx)) lt ; u⊆v = λ x → x } f∋b : odef (filter F) (& (ZFP P (* (BaseQ.q qx)) )) - f∋b = FQSet⊆F (subst (λ k → odef (filter FQ) k ) &iso fp∋b ) + f∋b = FQSet⊆F1 (subst (λ k → odef (filter FQ) k ) &iso fp∋b ) F∋base (g∩ {x} {y} b1 b2) bl = F∋x∩y where -- filter contains finite intersection fb01 : odef (filter F) x