Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff filter.agda @ 269:30e419a2be24
disjunction and conjunction
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 06 Oct 2019 16:42:42 +0900 |
parents | 7b4a66710cdd |
children | fc3d4bc1dc5e |
line wrap: on
line diff
--- a/filter.agda Mon Sep 30 21:22:07 2019 +0900 +++ b/filter.agda Sun Oct 06 16:42:42 2019 +0900 @@ -26,11 +26,56 @@ A ∩ B = record { def = λ x → def A x ∧ def B x } _∪_ : ( A B : OD ) → OD -A ∪ B = Union (A , B) +A ∪ B = record { def = λ x → def A x ∨ def B x } + +∪-Union : { A B : OD } → Union (A , B) ≡ ( A ∪ B ) +∪-Union {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where + lemma1 : {x : Ordinal} → def (Union (A , B)) x → def (A ∪ B) x + lemma1 {x} lt = lemma3 lt where + lemma4 : {y : Ordinal} → def (A , B) y ∧ def (ord→od y) x → ¬ (¬ ( def A x ∨ def B x) ) + lemma4 {y} z with proj1 z + lemma4 {y} z | case1 refl = double-neg (case1 ( subst (λ k → def k x ) oiso (proj2 z)) ) + lemma4 {y} z | case2 refl = double-neg (case2 ( subst (λ k → def k x ) oiso (proj2 z)) ) + lemma3 : (((u : Ordinals.ord O) → ¬ def (A , B) u ∧ def (ord→od u) x) → ⊥) → def (A ∪ B) x + lemma3 not = double-neg-eilm (FExists _ lemma4 not) + lemma2 : {x : Ordinal} → def (A ∪ B) x → def (Union (A , B)) x + lemma2 {x} (case1 A∋x) = subst (λ k → def (Union (A , B)) k) diso ( IsZF.union→ isZF (A , B) (ord→od x) A + (record { proj1 = case1 refl ; proj2 = subst (λ k → def A k) (sym diso) A∋x})) + lemma2 {x} (case2 B∋x) = subst (λ k → def (Union (A , B)) k) diso ( IsZF.union→ isZF (A , B) (ord→od x) B + (record { proj1 = case2 refl ; proj2 = subst (λ k → def B k) (sym diso) B∋x})) + +∩-Select : { A B : OD } → Select A ( λ x → ( A ∋ x ) ∧ ( B ∋ x ) ) ≡ ( A ∩ B ) +∩-Select {A} {B} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where + lemma1 : {x : Ordinal} → def (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x → def (A ∩ B) x + lemma1 {x} lt = record { proj1 = proj1 lt ; proj2 = subst (λ k → def B k ) diso (proj2 (proj2 lt)) } + lemma2 : {x : Ordinal} → def (A ∩ B) x → def (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x + lemma2 {x} lt = record { proj1 = proj1 lt ; proj2 = + record { proj1 = subst (λ k → def A k) (sym diso) (proj1 lt) ; proj2 = subst (λ k → def B k ) (sym diso) (proj2 lt) } } + +dist-ord : {p q r : OD } → p ∩ ( q ∪ r ) ≡ ( p ∩ q ) ∪ ( p ∩ r ) +dist-ord {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where + lemma1 : {x : Ordinal} → def (p ∩ (q ∪ r)) x → def ((p ∩ q) ∪ (p ∩ r)) x + lemma1 {x} lt with proj2 lt + lemma1 {x} lt | case1 q∋x = case1 ( record { proj1 = proj1 lt ; proj2 = q∋x } ) + lemma1 {x} lt | case2 r∋x = case2 ( record { proj1 = proj1 lt ; proj2 = r∋x } ) + lemma2 : {x : Ordinal} → def ((p ∩ q) ∪ (p ∩ r)) x → def (p ∩ (q ∪ r)) x + lemma2 {x} (case1 p∩q) = record { proj1 = proj1 p∩q ; proj2 = case1 (proj2 p∩q ) } + lemma2 {x} (case2 p∩r) = record { proj1 = proj1 p∩r ; proj2 = case2 (proj2 p∩r ) } + +dist-ord2 : {p q r : OD } → p ∪ ( q ∩ r ) ≡ ( p ∪ q ) ∩ ( p ∪ r ) +dist-ord2 {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where + lemma1 : {x : Ordinal} → def (p ∪ (q ∩ r)) x → def ((p ∪ q) ∩ (p ∪ r)) x + lemma1 {x} (case1 cp) = record { proj1 = case1 cp ; proj2 = case1 cp } + lemma1 {x} (case2 cqr) = record { proj1 = case2 (proj1 cqr) ; proj2 = case2 (proj2 cqr) } + lemma2 : {x : Ordinal} → def ((p ∪ q) ∩ (p ∪ r)) x → def (p ∪ (q ∩ r)) x + lemma2 {x} lt with proj1 lt | proj2 lt + lemma2 {x} lt | case1 cp | _ = case1 cp + lemma2 {x} lt | _ | case1 cp = case1 cp + lemma2 {x} lt | case2 cq | case2 cr = case2 ( record { proj1 = cq ; proj2 = cr } ) record Filter ( L : OD ) : Set (suc n) where field - F1 : { p q : OD } → L ∋ p → ({ x : OD} → _⊆_ q p {x} ) → L ∋ q + F1 : { p q : OD } → L ∋ p → ({ x : OD} → _⊆_ p q {x} ) → L ∋ q F2 : { p q : OD } → L ∋ p → L ∋ q → L ∋ (p ∩ q) open Filter @@ -44,8 +89,6 @@ ultra-filter : {L : OD} → Filter L → {p : OD } → Set n ultra-filter {L} P {p} = ( L ∋ p ) ∨ ( ¬ ( L ∋ p )) -postulate - dist-ord : {p q r : OD } → p ∩ ( q ∪ r ) ≡ ( p ∩ q ) ∪ ( p ∩ r ) filter-lemma1 : {L : OD} → (P : Filter L) → {p q : OD } → ( (p : OD ) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q} filter-lemma1 {L} P {p} {q} u lt with u p | u q @@ -61,10 +104,23 @@ F1 = {!!} ; F2 = {!!} } +record Dense (P : OD ) : Set (suc n) where + field + dense : OD + incl : { x : OD} → _⊆_ dense P {x} + dense-f : OD → OD + dense-p : { p x : OD} → P ∋ p → _⊆_ p (dense-f p) {x} + -- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) infinite = ZF.infinite OD→ZF -Hω2 : Filter (Power (Power infinite)) -Hω2 = record { F1 = {!!} ; F2 = {!!} } +module in-countable-ordinal {n : Level} where + + import ordinal + open ordinal.C-Ordinal-with-choice + + Hω2 : Filter (Power (Power infinite)) + Hω2 = record { F1 = {!!} ; F2 = {!!} } +