Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff ordinal-definable.agda @ 57:419688a279e0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 May 2019 11:31:43 +0900 |
parents | aad8cdce8845 |
children | 323b561210b5 |
line wrap: on
line diff
--- a/ordinal-definable.agda Tue May 28 00:07:23 2019 +0900 +++ b/ordinal-definable.agda Tue May 28 11:31:43 2019 +0900 @@ -128,10 +128,10 @@ ominimal {n} record { lv = (Suc lx) ; ord = (ℵ .lx) } (case1 (s≤s z≤n)) = record { mino = record { lv = Suc lx ; ord = Φ (Suc lx) } ; min<x = case2 ℵΦ< } ominimal {n} record { lv = (Suc lx) ; ord = (ℵ .lx) } (case2 ()) -∅5 : {n : Level} → ( x : Ordinal {n} ) → ¬ ( x ≡ o∅ {n} ) → o∅ {n} o< x -∅5 {n} record { lv = Zero ; ord = (Φ .0) } not = ⊥-elim (not refl) -∅5 {n} record { lv = Zero ; ord = (OSuc .0 ord) } not = case2 Φ< -∅5 {n} record { lv = (Suc lv) ; ord = ord } not = case1 (s≤s z≤n) +∅5 : {n : Level} → { x : Ordinal {n} } → ¬ ( x ≡ o∅ {n} ) → o∅ {n} o< x +∅5 {n} {record { lv = Zero ; ord = (Φ .0) }} not = ⊥-elim (not refl) +∅5 {n} {record { lv = Zero ; ord = (OSuc .0 ord) }} not = case2 Φ< +∅5 {n} {record { lv = (Suc lv) ; ord = ord }} not = case1 (s≤s z≤n) ∅8 : {n : Level} → ( x : Ordinal {n} ) → ¬ x o< o∅ {n} ∅8 {n} x (case1 ()) @@ -152,6 +152,9 @@ lemma : {x : OD {n} } {z : Ordinal {n}} → def (ord→od (od→ord x)) z → def x z lemma {x} {z} d = def-subst d oiso refl +=-iso : {n : Level } {x y : OD {suc n} } → (x == y) ≡ (ord→od (od→ord x) == y) +=-iso {_} {_} {y} = cong ( λ k → k == y ) (sym oiso) + ord→== : {n : Level} → { x y : OD {n} } → od→ord x ≡ od→ord y → x == y ord→== {n} {x} {y} eq = ==-iso (lemma (od→ord x) (od→ord y) (orefl eq)) where lemma : ( ox oy : Ordinal {n} ) → ox ≡ oy → (ord→od ox) == (ord→od oy) @@ -226,6 +229,11 @@ ... | min with eq→ ( def-subst (o<→c< (Minimumo.min<x min)) oiso refl ) ... | () +∅0 : {n : Level} → { x : Ordinal {n} } → o∅ {n} o< x → ¬ ( ord→od x == od∅ {n} ) +∅0 {n} {x} lt record { eq→ = eq→ ; eq← = eq← } with ominimal x lt +... | min with eq→ (o<→c< (Minimumo.min<x min)) +... | () + is-od∅ : {n : Level} → ( x : OD {suc n} ) → Dec ( x == od∅ {suc n} ) is-od∅ {n} x with trio< {n} (od→ord x) (o∅ {suc n}) @@ -240,10 +248,15 @@ is-∋ {n} x y | tri≈ ¬a b ¬c = no ¬c is-∋ {n} x y | tri> ¬a ¬b c = yes c +is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} ) +is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl +is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) +is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) + open _∧_ -∅9 : {n : Level} → (x : OD {n} ) → ¬ x == od∅ → o∅ o< od→ord x -∅9 x not = ∅5 ( od→ord x) lemma where +∅9 : {n : Level} → {x : OD {n} } → ¬ x == od∅ → o∅ o< od→ord x +∅9 {_} {x} not = ∅5 lemma where lemma : ¬ od→ord x ≡ o∅ lemma eq = not ( ∅7 eq ) @@ -319,43 +332,46 @@ ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } } minord : (x : OD {suc n} ) → ¬ (x == od∅ )→ Minimumo (od→ord x) - minord x not = ominimal (od→ord x) (∅9 x not) + minord x not = ominimal (od→ord x) (∅9 not) minimul : (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} minimul x not = ord→od ( mino (minord x not)) minimul<x : (x : OD {suc n} ) → (not : ¬ x == od∅ ) → x ∋ minimul x not minimul<x x not = lemma0 (min<x (minord x not)) where lemma0 : mino (minord x not) o< (od→ord x) → def x (od→ord (ord→od (mino (minord x not)))) lemma0 m<x = def-subst {suc n} {ord→od (od→ord x)} {od→ord (ord→od (mino (minord x not)))} (o<→c< m<x) oiso refl - regularity : (x : OD) (not : ¬ (x == od∅)) → - (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) - proj1 ( regularity x non ) = minimul<x x non - proj2 ( regularity x non ) = reg1 where - reg2 : {y : Ordinal} → ( def (minimul x non) y ∧ (minimul x non ∋ ord→od y) ∧ (x ∋ ord→od y) ) → ⊥ + regularity-ord : (x : Ordinal ) (not : o∅ o< x ) → + (ord→od x ∋ minimul (ord→od x) (∅0 not)) ∧ (Select (minimul (ord→od x) (∅0 not)) (λ x₁ → (minimul (ord→od x) (∅0 not) ∋ x₁) ∧ ((ord→od x) ∋ x₁)) == od∅) + proj1 ( regularity-ord x non ) = minimul<x (ord→od x) (∅0 non) + proj2 ( regularity-ord x non ) = reg1 where + reg2 : {y : Ordinal} → ( def (minimul (ord→od x) (∅0 non)) y ∧ (minimul (ord→od x) (∅0 non) ∋ ord→od y) ∧ ((ord→od x) ∋ ord→od y) ) → ⊥ reg2 {y} t with proj1 t | proj1 (proj2 t) | proj2 (proj2 t) - ... | p1 | p2 | p3 with is-∋ x ( ord→od y) + ... | p1 | p2 | p3 with is-∋ (ord→od x) ( ord→od y) reg2 {y} t | p1 | p2 | p3 | no ¬p = ⊥-elim (¬p p3 ) -- ¬ x ∋ ord→od y empty x case - reg2 {y} t | p1 | p2 | p3 | yes p with is-∋ (minimul x non) (ord→od y) + reg2 {y} t | p1 | p2 | p3 | yes p with is-∋ (minimul (ord→od x) (∅0 non)) (ord→od y) reg2 {y} t | p1 | p2 | p3 | yes p | no ¬p = ⊥-elim (¬p p2 ) -- minimum contains nothing q.e.d. reg2 {y} t | p1 | p2 | p3 | yes p | yes p₁ = {!!} - reg0 : {y : Ordinal {suc n}} → Minimumo (od→ord x) → def (Select (minimul x non) (λ z → (minimul x non ∋ z) ∧ (x ∋ z))) y → def od∅ y - reg0 {y} m t with trio< y (mino (minord x non)) - reg0 {y} m t | tri< a ¬b ¬c with reg2 {y} ( record { - proj1 = (def-subst {suc n} {minimul x non} (o<→c< a) refl diso ) - ; proj2 = record { proj1 = proj1 (proj2 t ) - ; proj2 = proj2 (proj2 t ) - }} ) + reg0 : {y : Ordinal {suc n}} → Minimumo x → def (Select (minimul (ord→od x) (∅0 non)) (λ z → (minimul (ord→od x) (∅0 non) ∋ z) ∧ ((ord→od x) ∋ z))) y → def od∅ y + reg0 {y} m t with trio< y (mino (minord (ord→od x) (∅0 non))) + reg0 {y} m t | tri< a ¬b ¬c with reg2 {y} t ... | () - reg0 {y} m t | tri≈ ¬a refl ¬c = lemma y ( mino (minord x non) ) refl - (def-subst {suc n} {ord→od y} {mino (minord x non)} (proj1 t) refl (sym diso)) + reg0 {y} m t | tri≈ ¬a refl ¬c = lemma y ( mino (minord (ord→od x) (∅0 non)) ) refl + (def-subst {suc n} {ord→od y} {mino (minord (ord→od x) (∅0 non))} (proj1 t) refl (sym diso)) where lemma : ( ox oy : Ordinal {suc n} ) → ox ≡ oy → ord→od ox c< ord→od oy → Lift (suc n) ⊥ lemma ox oy refl lt = lift ( o≡→¬c< {suc n} {ord→od oy} {ord→od oy} refl lt ) - reg0 {y} m t | tri> ¬a ¬b c with o<> y (mino (minord x non)) (lemma (proj1 t)) c where - lemma : def (ord→od (mino (ominimal (od→ord x) (∅5 (od→ord x) (λ eq → non (∅7 eq)))))) y → y o< mino (minord x non) - lemma d with c<→o< {suc n} {ord→od y} {ord→od (mino (minord x non))} - (def-subst {suc n} {ord→od (mino (minord x non))} {y} d refl (sym diso)) + reg0 {y} m t | tri> ¬a ¬b c with o<> y (mino (minord (ord→od x) (∅0 non))) (lemma {!!}) c where + lemma : def (ord→od (mino (ominimal x (∅5 (λ eq → (∅0 non) (∅7 {!!})))))) y → y o< mino (minord (ord→od x) (∅0 non)) + lemma d with c<→o< {suc n} {ord→od y} {ord→od (mino (minord (ord→od x) (∅0 non)))} + (def-subst {suc n} {ord→od (mino (minord (ord→od x) (∅0 non)))} {y} {!!} refl (sym diso)) lemma d | clt = o<-subst clt ord-iso ord-iso ... | () - reg1 : Select (minimul x non) (λ x₁ → (minimul x non ∋ x₁) ∧ (x ∋ x₁)) == od∅ - reg1 = record { eq→ = reg0 (minord x non) ; eq← = λ () } + reg1 : Select (minimul (ord→od x) (∅0 non)) (λ x₁ → (minimul (ord→od x) (∅0 non) ∋ x₁) ∧ ((ord→od x) ∋ x₁)) == od∅ + reg1 = record { eq→ = reg0 (ominimal x non) ; eq← = λ () } where + ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) + ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq where + regularity : (x : OD) (not : ¬ (x == od∅)) → + (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) + regularity x not with regularity-ord ( od→ord x ) ( ∅9 not ) + ... | t = ? +