Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff ordinal.agda @ 94:4659a815b70d
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 08 Jun 2019 13:18:10 +0900 |
parents | b4742cf4ef97 |
children | f2b579106770 |
line wrap: on
line diff
--- a/ordinal.agda Thu Jun 06 09:36:41 2019 +0900 +++ b/ordinal.agda Sat Jun 08 13:18:10 2019 +0900 @@ -109,6 +109,18 @@ ¬a≤a : {la : Nat} → Suc la ≤ la → ⊥ ¬a≤a (s≤s lt) = ¬a≤a lt +=→¬< : {x : Nat } → ¬ ( x < x ) +=→¬< {Zero} () +=→¬< {Suc x} (s≤s lt) = =→¬< lt + +o<¬≡ : {n : Level } ( ox oy : Ordinal {n}) → ox ≡ oy → ox o< oy → ⊥ +o<¬≡ ox ox refl (case1 lt) = =→¬< lt +o<¬≡ ox ox refl (case2 (s< lt)) = trio<≡ refl lt + +¬x<0 : {n : Level} → { x : Ordinal {suc n} } → ¬ ( x o< o∅ {suc n} ) +¬x<0 {n} {x} (case1 ()) +¬x<0 {n} {x} (case2 ()) + o<> : {n : Level} → {x y : Ordinal {n} } → y o< x → x o< y → ⊥ o<> {n} {x} {y} (case1 x₁) (case1 x₂) = nat-<> x₁ x₂ o<> {n} {x} {y} (case1 x₁) (case2 x₂) = nat-≡< (sym (d<→lv x₂)) x₁