diff src/Topology.agda @ 1486:49c3ef1e9b4f

Topology fixed
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 01 Jul 2024 16:07:57 +0900
parents 5dacb669f13b
children
line wrap: on
line diff
--- a/src/Topology.agda	Mon Jul 01 15:43:35 2024 +0900
+++ b/src/Topology.agda	Mon Jul 01 16:07:57 2024 +0900
@@ -598,17 +598,16 @@
                           fp38 : (L \  (* (SB.i (fp02 tx ux)))) ⊆ (L \ Union (* tx))
                           fp38 = SB.t⊆i (fp02 tx ux) 
                           fp39 : Union (* tx) ⊆  (* (SB.i (fp02 tx ux)))
-                          fp39 {w} txw with ∨L\X {L} {(SB.i (fp02 tx ux))} (fp40 ux ?)
-                          ... | t = ?
-                          -- ... | case1 sb = sb
-                          -- ... | case2 lsb = ⊥-elim ( proj2 (fp38 lsb) txw )
+                          fp39 {w} txw with ∨L\X {* (SB.i (fp02 tx ux))} (fp40 ux txw)
+                          ... | case1 sb = sb
+                          ... | case2 lsb = ⊥-elim ( proj2 (fp38 lsb) txw )
                       fp37 record { owner = owner ; ao = (case2 ax) ; ox = ox } = not (case2 (fp39 record { owner = _ ; ao = ax ; ox = ox }) ) where
                           fp38 : (L \  (* (SB.i (fp02 ty uy)))) ⊆ (L \ Union (* ty))
                           fp38 = SB.t⊆i (fp02 ty uy) 
                           fp39 : Union (* ty) ⊆  (* (SB.i (fp02 ty uy)))
-                          fp39 {w} tyw = ? -- with ∨L\X {L} {* (SB.i (fp02 ty uy))} (fp40 uy tyw)
-                          -- ... | case1 sb = sb
-                          -- ... | case2 lsb = ⊥-elim ( proj2 (fp38 lsb) tyw )
+                          fp39 {w} tyw with ∨L\X {* (SB.i (fp02 ty uy))} (fp40 uy tyw)
+                          ... | case1 sb = sb
+                          ... | case2 lsb = ⊥-elim ( proj2 (fp38 lsb) tyw )
               fp04 :  {tx ty : Ordinal} → & (* (& (L \ * tx)) ∩ * (& (L \ * ty))) ≡ & (L \ * (& (* tx ∪ * ty)))
               fp04 {tx} {ty} = ==→o≡ record { eq→ = fp05 ; eq← = fp09 }  where
                   fp05 : {x : Ordinal} → odef (* (& (L \ * tx)) ∩ * (& (L \ * ty))) x → odef (L \ * (& (* tx ∪ * ty))) x
@@ -633,7 +632,7 @@
           sb : SB (Compact.finCover compact (OOX CX) cov)
           sb = fp02 fp01 (Compact.isFinite compact (OOX CX) cov)
           no-finite-cover : ¬ ( (* (Compact.finCover compact (OOX CX) cov)) covers L ) 
-          no-finite-cover fcovers = ? where -- ⊥-elim ( o<¬≡ (cong (&) (sym (==→o≡ f22))) f25 ) where
+          no-finite-cover fcovers = ⊥-elim ( o<¬≡ (sym (==→o≡ f22)) f25 ) where  
                f23 : (L \ * (SB.i sb)) ⊆ ( L \  Union (* (Compact.finCover compact (OOX CX) cov)))
                f23 = SB.t⊆i sb
                f22 : (L \  Union (* (Compact.finCover compact (OOX CX) cov))) =h= od∅
@@ -655,23 +654,23 @@
           fp17 : {x : Ordinal} → (Lx : odef L x ) → ¬ ( coverSet Lx =h= od∅ )
           fp17 {x} Lx eq = ⊥-elim (¬nc record { x = x ; yx = fp19 } ) where
              fp19 : {y : Ordinal} → odef (* X) y → odef (* y) x
-             fp19 {y} Xy = ? -- with ∨L\X {L} {* y} {x} Lx
-             -- ... | case1 yx = yx
-             -- ... | case2 lyx = ⊥-elim ( ¬x<0 {y} ( eq→ eq fp20 )) where
-             --    fp20 : odef (* X) y ∧ odef (L \ * y) x
-             --    fp20 = ⟪ Xy , lyx ⟫
+             fp19 {y} Xy with ∨L\X {* y} {x} Lx
+             ... | case1 yx = yx
+             ... | case2 lyx = ⊥-elim ( ¬x<0 {y} ( eq→ eq fp20 )) where
+                fp20 : odef (* X) y ∧ odef (L \ * y) x
+                fp20 = ⟪ Xy , lyx ⟫
           coverf : {x : Ordinal} → (Lx : odef L x ) → HOD
           coverf Lx =  minimal (coverSet Lx) (fp17 Lx)
           fp22 :  {x : Ordinal} (lt : odef L x) → odef (* (OX CX)) (& (L \ coverf lt))
-          fp22 {x} Lx = subst (λ k → odef k (& (L \ coverf Lx ))) ? record { z = _ ; az = fp25 ; x=ψz = fp24   } where
+          fp22 {x} Lx = eq← *iso record { z = _ ; az = fp25 ; x=ψz = fp24   } where
              fp24 : & (L \ coverf Lx) ≡ & (L \ * (& (coverf Lx)))
-             fp24 = cong (λ k → & ( L \ k )) ?
+             fp24 = ==→o≡ (\-cong L L (coverf Lx) (* (& (coverf Lx))) ==-refl (==-sym *iso) )
              fp25 : odef (* X) (& (coverf Lx))
              fp25 = proj1 ( x∋minimal (coverSet Lx) (fp17 Lx) )
           fp23 :  {x : Ordinal} (lt : odef L x) → odef (* (& (L \ coverf lt))) x
-          fp23 {x} Lx = subst (λ k → odef k x) ? ⟪ Lx , fp26 ⟫  where
+          fp23 {x} Lx = eq← *iso ⟪ Lx , fp26 ⟫  where
              fp26 : ¬ odef (coverf Lx) x
-             fp26 = subst (λ k → ¬ odef k x ) ? (proj2 (proj2 ( x∋minimal (coverSet Lx) (fp17 Lx) ))  )
+             fp26 llx = proj2 (proj2 ( x∋minimal (coverSet Lx) (fp17 Lx) )) (eq← *iso llx) 
    limit : {X : Ordinal} (CX : * X ⊆ CS top) (fip : {x : Ordinal} → Subbase (* X) x → o∅ o< x) → Ordinal
    limit {X} CX fip with trio< X o∅ 
    ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a )
@@ -712,7 +711,7 @@
     f1 : {p q : HOD} → Power P ∋ q → NF ∋ p → p ⊆ q → NF ∋ q
     f1 {p} {q} Pq Np p⊆q = record { u = Neighbor.u Np ; ou = Neighbor.ou Np ; ux = Neighbor.ux Np ; v⊆P = Pq _ ; u⊆v = f11 } where
         f11 :  * (Neighbor.u Np) ⊆ * (& q)
-        f11 {x} ux = subst (λ k → odef k x ) ? ( p⊆q (subst (λ k → odef k x) ? (Neighbor.u⊆v Np ux)) )
+        f11 {x} ux = eq← *iso ( p⊆q (eq→ *iso  (Neighbor.u⊆v Np ux)) )
     f2 : {p q : HOD} → NF ∋ p → NF ∋ q → Power P ∋ (p ∩ q) → NF ∋ (p ∩ q)
     f2 {p} {q} Np Nq Ppq = record { u = upq ; ou = ou ; ux = ux ; v⊆P = Ppq _ ; u⊆v = f20 } where
          upq : Ordinal
@@ -720,20 +719,19 @@
          ou : odef (OS TP) upq
          ou = o∩ TP (subst (λ k → odef (OS TP) k) (sym &iso) (Neighbor.ou Np)) (subst (λ k → odef (OS TP) k) (sym &iso) (Neighbor.ou Nq))
          ux :  odef (* upq) x
-         ux = subst ( λ k → odef k x ) ? ⟪ Neighbor.ux Np , Neighbor.ux Nq ⟫
+         ux = eq← *iso ⟪ Neighbor.ux Np , Neighbor.ux Nq ⟫
          f20 : * upq ⊆ * (& (p ∩ q))
-         f20 = subst₂ (λ j k → j ⊆ k ) ? ? ( λ {x} pq 
-           → ⟪ subst (λ k → odef k x) ? (Neighbor.u⊆v Np (proj1 pq))  , subst (λ k → odef k x) ? (Neighbor.u⊆v Nq (proj2 pq)) ⟫  )
+         f20 {x} lt = eq← *iso ⟪ eq→  *iso  (Neighbor.u⊆v Np (proj1 pq))  , eq→ *iso (Neighbor.u⊆v Nq (proj2 pq)) ⟫  where
+             pq :  odef (* (Neighbor.u Np) ∩ * (Neighbor.u Nq)) x
+             pq = eq→ *iso lt
 
 CAP : (P : HOD) {p q : HOD } → Power P ∋ p → Power P ∋ q → Power P ∋ (p ∩ q)
-CAP P {p} {q} Pp Pq x pqx with subst (λ k → odef k x ) ? pqx
-... | t = ?
--- ... | ⟪ px , qx ⟫ = Pp _ (subst (λ k → odef k x) ? px )
+CAP P {p} {q} Pp Pq x pqx with eq→ *iso pqx
+... | ⟪ px , qx ⟫ = Pp _ (eq← *iso px )
 
 NEG : (P : HOD) {p : HOD } → Power P ∋ p → Power P ∋ (P \ p )
-NEG P {p} Pp x vx with subst (λ k → odef k x) ? vx
-... | t = ?
--- ... | ⟪ Px , npx ⟫ = Px
+NEG P {p} Pp x vx with eq→ *iso vx
+... | ⟪ Px , npx ⟫ = Px