Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff OPair.agda @ 329:5544f4921a44
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 05 Jul 2020 12:32:09 +0900 |
parents | d9d3654baee1 |
children | 2a8a51375e49 |
line wrap: on
line diff
--- a/OPair.agda Sun Jul 05 11:40:55 2020 +0900 +++ b/OPair.agda Sun Jul 05 12:32:09 2020 +0900 @@ -17,6 +17,7 @@ open inOrdinal O open OD O open OD.OD +open OD.HOD open ODAxiom odAxiom open _∧_ @@ -25,30 +26,33 @@ open _==_ -<_,_> : (x y : OD) → OD +_=h=_ : (x y : HOD) → Set n +x =h= y = od x == od y + +<_,_> : (x y : HOD) → HOD < x , y > = (x , x ) , (x , y ) -exg-pair : { x y : OD } → (x , y ) == ( y , x ) +exg-pair : { x y : HOD } → (x , y ) =h= ( y , x ) exg-pair {x} {y} = record { eq→ = left ; eq← = right } where - left : {z : Ordinal} → def (x , y) z → def (y , x) z + left : {z : Ordinal} → odef (x , y) z → odef (y , x) z left (case1 t) = case2 t left (case2 t) = case1 t - right : {z : Ordinal} → def (y , x) z → def (x , y) z + right : {z : Ordinal} → odef (y , x) z → odef (x , y) z right (case1 t) = case2 t right (case2 t) = case1 t -ord≡→≡ : { x y : OD } → od→ord x ≡ od→ord y → x ≡ y +ord≡→≡ : { x y : HOD } → od→ord x ≡ od→ord y → x ≡ y ord≡→≡ eq = subst₂ (λ j k → j ≡ k ) oiso oiso ( cong ( λ k → ord→od k ) eq ) od≡→≡ : { x y : Ordinal } → ord→od x ≡ ord→od y → x ≡ y od≡→≡ eq = subst₂ (λ j k → j ≡ k ) diso diso ( cong ( λ k → od→ord k ) eq ) -eq-prod : { x x' y y' : OD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' > +eq-prod : { x x' y y' : HOD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' > eq-prod refl refl = refl -prod-eq : { x x' y y' : OD } → < x , y > == < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' ) +prod-eq : { x x' y y' : HOD } → < x , y > =h= < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' ) prod-eq {x} {x'} {y} {y'} eq = record { proj1 = lemmax ; proj2 = lemmay } where - lemma0 : {x y z : OD } → ( x , x ) == ( z , y ) → x ≡ y + lemma0 : {x y z : HOD } → ( x , x ) =h= ( z , y ) → x ≡ y lemma0 {x} {y} eq with trio< (od→ord x) (od→ord y) lemma0 {x} {y} eq | tri< a ¬b ¬c with eq← eq {od→ord y} (case2 refl) lemma0 {x} {y} eq | tri< a ¬b ¬c | case1 s = ⊥-elim ( o<¬≡ (sym s) a ) @@ -57,15 +61,15 @@ lemma0 {x} {y} eq | tri> ¬a ¬b c with eq← eq {od→ord y} (case2 refl) lemma0 {x} {y} eq | tri> ¬a ¬b c | case1 s = ⊥-elim ( o<¬≡ s c ) lemma0 {x} {y} eq | tri> ¬a ¬b c | case2 s = ⊥-elim ( o<¬≡ s c ) - lemma2 : {x y z : OD } → ( x , x ) == ( z , y ) → z ≡ y + lemma2 : {x y z : HOD } → ( x , x ) =h= ( z , y ) → z ≡ y lemma2 {x} {y} {z} eq = trans (sym (lemma0 lemma3 )) ( lemma0 eq ) where - lemma3 : ( x , x ) == ( y , z ) + lemma3 : ( x , x ) =h= ( y , z ) lemma3 = ==-trans eq exg-pair - lemma1 : {x y : OD } → ( x , x ) == ( y , y ) → x ≡ y + lemma1 : {x y : HOD } → ( x , x ) =h= ( y , y ) → x ≡ y lemma1 {x} {y} eq with eq← eq {od→ord y} (case2 refl) lemma1 {x} {y} eq | case1 s = ord≡→≡ (sym s) lemma1 {x} {y} eq | case2 s = ord≡→≡ (sym s) - lemma4 : {x y z : OD } → ( x , y ) == ( x , z ) → y ≡ z + lemma4 : {x y z : HOD } → ( x , y ) =h= ( x , z ) → y ≡ z lemma4 {x} {y} {z} eq with eq← eq {od→ord z} (case2 refl) lemma4 {x} {y} {z} eq | case1 s with ord≡→≡ s -- x ≡ z ... | refl with lemma2 (==-sym eq ) @@ -81,6 +85,9 @@ ... | refl with lemma4 eq -- with (x,y)≡(x,y') ... | eq1 = lemma4 (ord→== (cong (λ k → od→ord k ) eq1 )) +-- +-- unlike ordered pair, ZFProduct is not a HOD + data ord-pair : (p : Ordinal) → Set n where pair : (x y : Ordinal ) → ord-pair ( od→ord ( < ord→od x , ord→od y > ) ) @@ -94,35 +101,38 @@ pi1 : { p : Ordinal } → ord-pair p → Ordinal pi1 ( pair x y) = x -π1 : { p : OD } → ZFProduct ∋ p → OD +π1 : { p : HOD } → def ZFProduct (od→ord p) → HOD π1 lt = ord→od (pi1 lt ) pi2 : { p : Ordinal } → ord-pair p → Ordinal pi2 ( pair x y ) = y -π2 : { p : OD } → ZFProduct ∋ p → OD +π2 : { p : HOD } → def ZFProduct (od→ord p) → HOD π2 lt = ord→od (pi2 lt ) -op-cons : { ox oy : Ordinal } → ZFProduct ∋ < ord→od ox , ord→od oy > +op-cons : { ox oy : Ordinal } → def ZFProduct (od→ord ( < ord→od ox , ord→od oy > )) op-cons {ox} {oy} = pair ox oy -p-cons : ( x y : OD ) → ZFProduct ∋ < x , y > -p-cons x y = def-subst {_} {_} {ZFProduct} {od→ord (< x , y >)} (pair (od→ord x) ( od→ord y )) refl ( - let open ≡-Reasoning in begin - od→ord < ord→od (od→ord x) , ord→od (od→ord y) > - ≡⟨ cong₂ (λ j k → od→ord < j , k >) oiso oiso ⟩ - od→ord < x , y > - ∎ ) +def-subst : {Z : OD } {X : Ordinal }{z : OD } {x : Ordinal }→ def Z X → Z ≡ z → X ≡ x → def z x +def-subst df refl refl = df + +p-cons : ( x y : HOD ) → def ZFProduct (od→ord ( < x , y >)) +p-cons x y = def-subst {_} {_} {ZFProduct} {od→ord (< x , y >)} (pair (od→ord x) ( od→ord y )) refl ( + let open ≡-Reasoning in begin + od→ord < ord→od (od→ord x) , ord→od (od→ord y) > + ≡⟨ cong₂ (λ j k → od→ord < j , k >) oiso oiso ⟩ + od→ord < x , y > + ∎ ) op-iso : { op : Ordinal } → (q : ord-pair op ) → od→ord < ord→od (pi1 q) , ord→od (pi2 q) > ≡ op op-iso (pair ox oy) = refl -p-iso : { x : OD } → (p : ZFProduct ∋ x ) → < π1 p , π2 p > ≡ x +p-iso : { x : HOD } → (p : def ZFProduct (od→ord x) ) → < π1 p , π2 p > ≡ x p-iso {x} p = ord≡→≡ (op-iso p) -p-pi1 : { x y : OD } → (p : ZFProduct ∋ < x , y > ) → π1 p ≡ x +p-pi1 : { x y : HOD } → (p : def ZFProduct (od→ord < x , y >) ) → π1 p ≡ x p-pi1 {x} {y} p = proj1 ( prod-eq ( ord→== (op-iso p) )) -p-pi2 : { x y : OD } → (p : ZFProduct ∋ < x , y > ) → π2 p ≡ y +p-pi2 : { x y : HOD } → (p : def ZFProduct (od→ord < x , y >) ) → π2 p ≡ y p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p)))