Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff OD.agda @ 287:5de8905a5a2b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Jun 2020 20:29:12 +0900 |
parents | d9d3654baee1 |
children | ef93c56ad311 |
line wrap: on
line diff
--- a/OD.agda Sun May 10 09:25:18 2020 +0900 +++ b/OD.agda Sun Jun 07 20:29:12 2020 +0900 @@ -246,7 +246,7 @@ ; infinite = infinite ; isZF = isZF } where - ZFSet = OD + ZFSet = OD -- is less than Ords because of maxod Select : (X : OD ) → ((x : OD ) → Set n ) → OD Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) } Replace : OD → (OD → OD ) → OD @@ -260,7 +260,7 @@ Power : OD → OD Power A = Replace (Def (Ord (od→ord A))) ( λ x → A ∩ x ) -- {_} : ZFSet → ZFSet - -- { x } = ( x , x ) + -- { x } = ( x , x ) -- it works but we don't use data infinite-d : ( x : Ordinal ) → Set n where iφ : infinite-d o∅