Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff src/Tychonoff.agda @ 1279:7e7d8d825632
P x Q ⇆ Q x P done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 06 Apr 2023 09:16:52 +0900 |
parents | b15dd4438d50 |
children | f4dac8be0a01 |
line wrap: on
line diff
--- a/src/Tychonoff.agda Wed Apr 05 17:05:32 2023 +0900 +++ b/src/Tychonoff.agda Thu Apr 06 09:16:52 2023 +0900 @@ -35,7 +35,7 @@ open import filter O open import ZProduct O open import Topology O --- open import maximum-filter O +open import maximum-filter O open Filter open Topology @@ -80,6 +80,15 @@ P∋limit : odef P limit is-limit : {v : Ordinal} → Neighbor TP limit v → filter F ∋ (* v) +-- +-- If Any ultra filter has a limit that is all neighbor of the limit is in the filter, +-- it has finite intersection property. +-- +-- Finite intersection defines a filter, so we have a ultra filter becaause Zorn lemma maximizing it. +-- If the limit of filter is not contained by a closed set p in FIP, it is in P \ p. It is open and +-- contains the limit, so it is in the ultra filter. This means p and P \ p is in the filter, which +-- contradicts proper of the ultra filter. +-- UFLP→FIP : {P : HOD} (TP : Topology P) → ((F : Filter {Power P} {P} (λ x → x) ) (UF : ultra-filter F ) → UFLP TP F UF ) → FIP TP UFLP→FIP {P} TP uflp with trio< (& P) o∅ @@ -176,13 +185,13 @@ -- otherwise the check requires a minute -- maxf : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → MaximumFilter (λ x → x) (F CSX fp) - maxf {X} 0<X CSX fp = ? -- F→Maximum {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc 0<X CSX fp) (proper CSX fp) + maxf {X} 0<X CSX fp = F→Maximum {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc 0<X CSX fp) (proper CSX fp) mf : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → Filter {Power P} {P} (λ x → x) mf {X} 0<X CSX fp = MaximumFilter.mf (maxf 0<X CSX fp) ultraf : {X : Ordinal} → (0<X : o∅ o< X ) → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → ultra-filter ( mf 0<X CSX fp) - ultraf {X} 0<X CSX fp = ? -- F→ultra {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc 0<X CSX fp) (proper CSX fp) + ultraf {X} 0<X CSX fp = F→ultra {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc 0<X CSX fp) (proper CSX fp) -- - -- so it has a limit as a limit of UIP + -- so it has a limit as a limit of FIP -- limit : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip {X} CSX → Ordinal limit {X} CSX fp with trio< o∅ X @@ -243,6 +252,13 @@ P⊆Clx : {P : HOD} (TP : Topology P) → {x : HOD} → x ⊆ P → Cl TP x ⊆ P P⊆Clx {P} TP {x} x<p {y} xy = proj1 xy +-- +-- Finite intersection property implies that any ultra filter have a limit, that is, neighbors of the limit is in the filter. +-- +-- An ultra filter F is given. Take a closure of a filter. It is closed and it has finite intersection property, because F is porper. +-- So it has a limit as a FIP. If a neighbor p which contains the limit, p or P \ p is in the ultra filter. +-- If it is in P \ p, it cannot contains the limit, contradiction. +-- FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP → (F : Filter {Power P} {P} (λ x → x)) (UF : ultra-filter F ) → UFLP {P} TP F UF FIP→UFLP {P} TP fip F UF = record { limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 @@ -345,18 +361,24 @@ postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -FilterQP : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) - → Filter {Power (ZFP Q P)} {ZFP Q P} (λ x → x) -FilterQP {P} {Q} F = record { filter = ? ; f⊆L = ? ; filter1 = ? ; filter2 = ? } +-- FilterQP : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) +-- → Filter {Power (ZFP Q P)} {ZFP Q P} (λ x → x) +-- FilterQP {P} {Q} F = record { filter = ? ; f⊆L = ? ; filter1 = ? ; filter2 = ? } +-- +-- projection-of-filter : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) +-- → Filter {Power P} {P} (λ x → x) +-- projection-of-filter = ? +-- +-- projection-of-ultra-filter : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) (UF : ultra-filter F) +-- → ultra-filter (projection-of-filter F) +-- projection-of-ultra-filter = ? -projection-of-filter : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) - → Filter {Power P} {P} (λ x → x) -projection-of-filter = ? - -projection-of-ultra-filter : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) (UF : ultra-filter F) - → ultra-filter (projection-of-filter F) -projection-of-ultra-filter = ? - +-- +-- We have UFLP both in P and Q. Given an ultra filter F on P x Q. It has limits on P and Q because a projection of ultra filter +-- is a ultra filter. Show the product of the limits is a limit of P x Q. A neighbor of P x Q contains subbase of P x Q, +-- which is either inverse projection x of P or Q. The x in in projection of F, because of UFLP. So it is in F, because of the +-- property of the filter. +-- Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) → Compact TP → Compact TQ → Compact (ProductTopology TP TQ) Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (ProductTopology TP TQ) (UFLP→FIP (ProductTopology TP TQ) uflPQ ) where uflP : (F : Filter {Power P} {P} (λ x → x)) (UF : ultra-filter F)