Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff ODC.agda @ 396:8c092c042093
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 27 Jul 2020 15:11:54 +0900 |
parents | 8b0715e28b33 |
children | 44a484f17f26 |
line wrap: on
line diff
--- a/ODC.agda Mon Jul 27 09:29:41 2020 +0900 +++ b/ODC.agda Mon Jul 27 15:11:54 2020 +0900 @@ -84,7 +84,7 @@ power→⊆ : ( A t : HOD) → Power A ∋ t → t ⊆ A power→⊆ A t PA∋t = record { incl = λ {x} t∋x → double-neg-eilm (t1 t∋x) } where t1 : {x : HOD } → t ∋ x → ¬ ¬ (A ∋ x) - t1 = zf.IsZF.power→ isZF A t PA∋t + t1 = power→ A t PA∋t OrdP : ( x : Ordinal ) ( y : HOD ) → Dec ( Ord x ∋ y ) OrdP x y with trio< x (od→ord y)