Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff Ordinals.agda @ 220:95a26d1698f4
try to separate Ordinals
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 07 Aug 2019 10:28:33 +0900 |
parents | ordinal.agda@eee983e4b402 |
children | 1709c80b7275 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Ordinals.agda Wed Aug 07 10:28:33 2019 +0900 @@ -0,0 +1,189 @@ +open import Level +module Ordinals where + +open import zf + +open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) +open import Data.Empty +open import Relation.Binary.PropositionalEquality +open import logic +open import nat +open import Data.Unit using ( ⊤ ) +open import Relation.Nullary +open import Relation.Binary +open import Relation.Binary.Core + + + +record IsOrdinal {n : Level} (Ord : Set n) (_O<_ : Ord → Ord → Set n) : Set n where + field + Otrans : {x y z : Ord } → x O< y → y O< z → x O< z + OTri : Trichotomous {n} _≡_ _O<_ + +record Ordinal {n : Level} : Set (suc n) where + field + ord : Set n + O< : ord → ord → Set n + isOrdinal : IsOrdinal ord O< + +open Ordinal + +_o<_ : {n : Level} ( x y : Ordinal {n}) → Set n +_o<_ x y = O< x {!!} {!!} -- (ord x) (ord y) + +o<-dom : {n : Level} { x y : Ordinal {n}} → x o< y → Ordinal +o<-dom {n} {x} _ = x + +o<-cod : {n : Level} { x y : Ordinal {n}} → x o< y → Ordinal +o<-cod {n} {_} {y} _ = y + +o<-subst : {n : Level } {Z X z x : Ordinal {n}} → Z o< X → Z ≡ z → X ≡ x → z o< x +o<-subst df refl refl = df + +o∅ : {n : Level} → Ordinal {n} +o∅ = {!!} + +osuc : {n : Level} ( x : Ordinal {n} ) → Ordinal {n} +osuc = {!!} + +<-osuc : {n : Level} { x : Ordinal {n} } → x o< osuc x +<-osuc = {!!} + +osucc : {n : Level} {ox oy : Ordinal {n}} → oy o< ox → osuc oy o< osuc ox +osucc = {!!} + +o<¬≡ : {n : Level } { ox oy : Ordinal {suc n}} → ox ≡ oy → ox o< oy → ⊥ +o<¬≡ = {!!} + +¬x<0 : {n : Level} → { x : Ordinal {suc n} } → ¬ ( x o< o∅ {suc n} ) +¬x<0 = {!!} + +o<> : {n : Level} → {x y : Ordinal {n} } → y o< x → x o< y → ⊥ +o<> = {!!} + +osuc-≡< : {n : Level} { a x : Ordinal {n} } → x o< osuc a → (x ≡ a ) ∨ (x o< a) +osuc-≡< = {!!} + +osuc-< : {n : Level} { x y : Ordinal {n} } → y o< osuc x → x o< y → ⊥ +osuc-< = {!!} + +_o≤_ : {n : Level} → Ordinal → Ordinal → Set (suc n) +a o≤ b = (a ≡ b) ∨ ( a o< b ) + +ordtrans : {n : Level} {x y z : Ordinal {n} } → x o< y → y o< z → x o< z +ordtrans = {!!} + +trio< : {n : Level } → Trichotomous {suc n} _≡_ _o<_ +trio< = {!!} + +xo<ab : {n : Level} {oa ob : Ordinal {suc n}} → ( {ox : Ordinal {suc n}} → ox o< oa → ox o< ob ) → oa o< osuc ob +xo<ab {n} {oa} {ob} a→b with trio< oa ob +xo<ab {n} {oa} {ob} a→b | tri< a ¬b ¬c = ordtrans a <-osuc +xo<ab {n} {oa} {ob} a→b | tri≈ ¬a refl ¬c = <-osuc +xo<ab {n} {oa} {ob} a→b | tri> ¬a ¬b c = ⊥-elim ( o<¬≡ refl (a→b c ) ) + +maxα : {n : Level} → Ordinal {suc n} → Ordinal → Ordinal +maxα x y with trio< x y +maxα x y | tri< a ¬b ¬c = y +maxα x y | tri> ¬a ¬b c = x +maxα x y | tri≈ ¬a refl ¬c = x + +minα : {n : Level} → Ordinal {n} → Ordinal → Ordinal +minα {n} x y with trio< {n} x y +minα x y | tri< a ¬b ¬c = x +minα x y | tri> ¬a ¬b c = y +minα x y | tri≈ ¬a refl ¬c = x + +min1 : {n : Level} → {x y z : Ordinal {n} } → z o< x → z o< y → z o< minα x y +min1 {n} {x} {y} {z} z<x z<y with trio< {n} x y +min1 {n} {x} {y} {z} z<x z<y | tri< a ¬b ¬c = z<x +min1 {n} {x} {y} {z} z<x z<y | tri≈ ¬a refl ¬c = z<x +min1 {n} {x} {y} {z} z<x z<y | tri> ¬a ¬b c = z<y + +-- +-- max ( osuc x , osuc y ) +-- + +omax : {n : Level} ( x y : Ordinal {suc n} ) → Ordinal {suc n} +omax {n} x y with trio< x y +omax {n} x y | tri< a ¬b ¬c = osuc y +omax {n} x y | tri> ¬a ¬b c = osuc x +omax {n} x y | tri≈ ¬a refl ¬c = osuc x + +omax< : {n : Level} ( x y : Ordinal {suc n} ) → x o< y → osuc y ≡ omax x y +omax< {n} x y lt with trio< x y +omax< {n} x y lt | tri< a ¬b ¬c = refl +omax< {n} x y lt | tri≈ ¬a b ¬c = ⊥-elim (¬a lt ) +omax< {n} x y lt | tri> ¬a ¬b c = ⊥-elim (¬a lt ) + +omax≡ : {n : Level} ( x y : Ordinal {suc n} ) → x ≡ y → osuc y ≡ omax x y +omax≡ {n} x y eq with trio< x y +omax≡ {n} x y eq | tri< a ¬b ¬c = ⊥-elim (¬b eq ) +omax≡ {n} x y eq | tri≈ ¬a refl ¬c = refl +omax≡ {n} x y eq | tri> ¬a ¬b c = ⊥-elim (¬b eq ) + +omax-x : {n : Level} ( x y : Ordinal {suc n} ) → x o< omax x y +omax-x {n} x y with trio< x y +omax-x {n} x y | tri< a ¬b ¬c = ordtrans a <-osuc +omax-x {n} x y | tri> ¬a ¬b c = <-osuc +omax-x {n} x y | tri≈ ¬a refl ¬c = <-osuc + +omax-y : {n : Level} ( x y : Ordinal {suc n} ) → y o< omax x y +omax-y {n} x y with trio< x y +omax-y {n} x y | tri< a ¬b ¬c = <-osuc +omax-y {n} x y | tri> ¬a ¬b c = ordtrans c <-osuc +omax-y {n} x y | tri≈ ¬a refl ¬c = <-osuc + +omxx : {n : Level} ( x : Ordinal {suc n} ) → omax x x ≡ osuc x +omxx {n} x with trio< x x +omxx {n} x | tri< a ¬b ¬c = ⊥-elim (¬b refl ) +omxx {n} x | tri> ¬a ¬b c = ⊥-elim (¬b refl ) +omxx {n} x | tri≈ ¬a refl ¬c = refl + +omxxx : {n : Level} ( x : Ordinal {suc n} ) → omax x (omax x x ) ≡ osuc (osuc x) +omxxx {n} x = trans ( cong ( λ k → omax x k ) (omxx x )) (sym ( omax< x (osuc x) <-osuc )) + +open _∧_ + +osuc2 : {n : Level} ( x y : Ordinal {suc n} ) → ( osuc x o< osuc (osuc y )) ⇔ (x o< osuc y) +osuc2 = {!!} + +OrdTrans : {n : Level} → Transitive {suc n} _o≤_ +OrdTrans (case1 refl) (case1 refl) = case1 refl +OrdTrans (case1 refl) (case2 lt2) = case2 lt2 +OrdTrans (case2 lt1) (case1 refl) = case2 lt1 +OrdTrans (case2 x) (case2 y) = case2 (ordtrans x y) + +OrdPreorder : {n : Level} → Preorder (suc n) (suc n) (suc n) +OrdPreorder {n} = record { Carrier = Ordinal + ; _≈_ = _≡_ + ; _∼_ = _o≤_ + ; isPreorder = record { + isEquivalence = record { refl = refl ; sym = sym ; trans = trans } + ; reflexive = case1 + ; trans = OrdTrans + } + } + +TransFinite : {n m : Level} → { ψ : Ordinal {suc n} → Set m } + → {!!} + → {!!} + → ∀ (x : Ordinal) → ψ x +TransFinite {n} {m} {ψ} = {!!} + +-- we cannot prove this in intutionistic logic +-- (¬ (∀ y → ¬ ( ψ y ))) → (ψ y → p ) → p +-- postulate +-- TransFiniteExists : {n m l : Level} → ( ψ : Ordinal {n} → Set m ) +-- → (exists : ¬ (∀ y → ¬ ( ψ y ) )) +-- → {p : Set l} ( P : { y : Ordinal {n} } → ψ y → p ) +-- → p +-- +-- Instead we prove +-- +TransFiniteExists : {n m l : Level} → ( ψ : Ordinal {n} → Set m ) + → {p : Set l} ( P : { y : Ordinal {n} } → ψ y → ¬ p ) + → (exists : ¬ (∀ y → ¬ ( ψ y ) )) + → ¬ p +TransFiniteExists {n} {m} {l} ψ {p} P = contra-position ( λ p y ψy → P {y} ψy p ) +