diff OPair.agda @ 272:985a1af11bce

separate ordered pair and Boolean Algebra
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 31 Dec 2019 11:22:52 +0900
parents
children d9d3654baee1
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/OPair.agda	Tue Dec 31 11:22:52 2019 +0900
@@ -0,0 +1,127 @@
+open import Level
+open import Ordinals
+module OPair {n : Level } (O : Ordinals {n})   where
+
+open import zf
+open import logic
+import OD 
+
+open import Relation.Nullary
+open import Relation.Binary
+open import Data.Empty
+open import Relation.Binary
+open import Relation.Binary.Core
+open import  Relation.Binary.PropositionalEquality
+open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 
+
+open inOrdinal O
+open OD O
+open OD.OD
+
+open _∧_
+open _∨_
+open Bool
+
+open _==_
+
+<_,_> : (x y : OD) → OD
+< x , y > = (x , x ) , (x , y )
+
+exg-pair : { x y : OD } → (x , y ) == ( y , x )
+exg-pair {x} {y} = record { eq→ = left ; eq← = right } where
+    left : {z : Ordinal} → def (x , y) z → def (y , x) z 
+    left (case1 t) = case2 t
+    left (case2 t) = case1 t
+    right : {z : Ordinal} → def (y , x) z → def (x , y) z 
+    right (case1 t) = case2 t
+    right (case2 t) = case1 t
+
+ord≡→≡ : { x y : OD } → od→ord x ≡ od→ord y → x ≡ y
+ord≡→≡ eq = subst₂ (λ j k → j ≡ k ) oiso oiso ( cong ( λ k → ord→od k ) eq )
+
+od≡→≡ : { x y : Ordinal } → ord→od x ≡ ord→od y → x ≡ y
+od≡→≡ eq = subst₂ (λ j k → j ≡ k ) diso diso ( cong ( λ k → od→ord k ) eq )
+
+eq-prod : { x x' y y' : OD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' >
+eq-prod refl refl = refl
+
+prod-eq : { x x' y y' : OD } → < x , y > == < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' )
+prod-eq {x} {x'} {y} {y'} eq = record { proj1 = lemmax ; proj2 = lemmay } where
+    lemma0 : {x y z : OD } → ( x , x ) == ( z , y ) → x ≡ y
+    lemma0 {x} {y} eq with trio< (od→ord x) (od→ord y) 
+    lemma0 {x} {y} eq | tri< a ¬b ¬c with eq← eq {od→ord y} (case2 refl) 
+    lemma0 {x} {y} eq | tri< a ¬b ¬c | case1 s = ⊥-elim ( o<¬≡ (sym s) a )
+    lemma0 {x} {y} eq | tri< a ¬b ¬c | case2 s = ⊥-elim ( o<¬≡ (sym s) a )
+    lemma0 {x} {y} eq | tri≈ ¬a b ¬c = ord≡→≡ b
+    lemma0 {x} {y} eq | tri> ¬a ¬b c  with eq← eq {od→ord y} (case2 refl) 
+    lemma0 {x} {y} eq | tri> ¬a ¬b c | case1 s = ⊥-elim ( o<¬≡ s c )
+    lemma0 {x} {y} eq | tri> ¬a ¬b c | case2 s = ⊥-elim ( o<¬≡ s c )
+    lemma2 : {x y z : OD } → ( x , x ) == ( z , y ) → z ≡ y
+    lemma2 {x} {y} {z} eq = trans (sym (lemma0 lemma3 )) ( lemma0 eq )  where
+        lemma3 : ( x , x ) == ( y , z )
+        lemma3 = ==-trans eq exg-pair
+    lemma1 : {x y : OD } → ( x , x ) == ( y , y ) → x ≡ y
+    lemma1 {x} {y} eq with eq← eq {od→ord y} (case2 refl)
+    lemma1 {x} {y} eq | case1 s = ord≡→≡ (sym s)
+    lemma1 {x} {y} eq | case2 s = ord≡→≡ (sym s)
+    lemma4 : {x y z : OD } → ( x , y ) == ( x , z ) → y ≡ z
+    lemma4 {x} {y} {z} eq with eq← eq {od→ord z} (case2 refl)
+    lemma4 {x} {y} {z} eq | case1 s with ord≡→≡ s -- x ≡ z
+    ... | refl with lemma2 (==-sym eq )
+    ... | refl = refl
+    lemma4 {x} {y} {z} eq | case2 s = ord≡→≡ (sym s) -- y ≡ z
+    lemmax : x ≡ x'
+    lemmax with eq→ eq {od→ord (x , x)} (case1 refl) 
+    lemmax | case1 s = lemma1 (ord→== s )  -- (x,x)≡(x',x')
+    lemmax | case2 s with lemma2 (ord→== s ) -- (x,x)≡(x',y') with x'≡y'
+    ... | refl = lemma1 (ord→== s )
+    lemmay : y ≡ y'
+    lemmay with lemmax
+    ... | refl with lemma4 eq -- with (x,y)≡(x,y')
+    ... | eq1 = lemma4 (ord→== (cong (λ  k → od→ord k )  eq1 ))
+
+data ord-pair : (p : Ordinal) → Set n where
+   pair : (x y : Ordinal ) → ord-pair ( od→ord ( < ord→od x , ord→od y > ) )
+
+ZFProduct : OD
+ZFProduct = record { def = λ x → ord-pair x }
+
+-- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) 
+-- eq-pair : { x x' y y' : Ordinal } → x ≡ x' → y ≡ y' → pair x y ≅ pair x' y'
+-- eq-pair refl refl = HE.refl
+
+pi1 : { p : Ordinal } →   ord-pair p →  Ordinal
+pi1 ( pair x y) = x
+
+π1 : { p : OD } → ZFProduct ∋ p → OD
+π1 lt = ord→od (pi1 lt )
+
+pi2 : { p : Ordinal } →   ord-pair p →  Ordinal
+pi2 ( pair x y ) = y
+
+π2 : { p : OD } → ZFProduct ∋ p → OD
+π2 lt = ord→od (pi2 lt )
+
+op-cons :  { ox oy  : Ordinal } → ZFProduct ∋ < ord→od ox , ord→od oy >  
+op-cons {ox} {oy} = pair ox oy
+
+p-cons :  ( x y  : OD ) → ZFProduct ∋ < x , y >
+p-cons x y =  def-subst {_} {_} {ZFProduct} {od→ord (< x , y >)} (pair (od→ord x) ( od→ord y )) refl (
+    let open ≡-Reasoning in begin
+        od→ord < ord→od (od→ord x) , ord→od (od→ord y) >
+    ≡⟨ cong₂ (λ j k → od→ord < j , k >) oiso oiso ⟩
+        od→ord < x , y >
+    ∎ ) 
+
+op-iso :  { op : Ordinal } → (q : ord-pair op ) → od→ord < ord→od (pi1 q) , ord→od (pi2 q) > ≡ op
+op-iso (pair ox oy) = refl
+
+p-iso :  { x  : OD } → (p : ZFProduct ∋ x ) → < π1 p , π2 p > ≡ x
+p-iso {x} p = ord≡→≡ (op-iso p) 
+
+p-pi1 :  { x y : OD } → (p : ZFProduct ∋ < x , y > ) →  π1 p ≡ x
+p-pi1 {x} {y} p = proj1 ( prod-eq ( ord→== (op-iso p) ))
+
+p-pi2 :  { x y : OD } → (p : ZFProduct ∋ < x , y > ) →  π2 p ≡ y
+p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p)))
+