Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff OPair.agda @ 272:985a1af11bce
separate ordered pair and Boolean Algebra
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 31 Dec 2019 11:22:52 +0900 |
parents | |
children | d9d3654baee1 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/OPair.agda Tue Dec 31 11:22:52 2019 +0900 @@ -0,0 +1,127 @@ +open import Level +open import Ordinals +module OPair {n : Level } (O : Ordinals {n}) where + +open import zf +open import logic +import OD + +open import Relation.Nullary +open import Relation.Binary +open import Data.Empty +open import Relation.Binary +open import Relation.Binary.Core +open import Relation.Binary.PropositionalEquality +open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) + +open inOrdinal O +open OD O +open OD.OD + +open _∧_ +open _∨_ +open Bool + +open _==_ + +<_,_> : (x y : OD) → OD +< x , y > = (x , x ) , (x , y ) + +exg-pair : { x y : OD } → (x , y ) == ( y , x ) +exg-pair {x} {y} = record { eq→ = left ; eq← = right } where + left : {z : Ordinal} → def (x , y) z → def (y , x) z + left (case1 t) = case2 t + left (case2 t) = case1 t + right : {z : Ordinal} → def (y , x) z → def (x , y) z + right (case1 t) = case2 t + right (case2 t) = case1 t + +ord≡→≡ : { x y : OD } → od→ord x ≡ od→ord y → x ≡ y +ord≡→≡ eq = subst₂ (λ j k → j ≡ k ) oiso oiso ( cong ( λ k → ord→od k ) eq ) + +od≡→≡ : { x y : Ordinal } → ord→od x ≡ ord→od y → x ≡ y +od≡→≡ eq = subst₂ (λ j k → j ≡ k ) diso diso ( cong ( λ k → od→ord k ) eq ) + +eq-prod : { x x' y y' : OD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' > +eq-prod refl refl = refl + +prod-eq : { x x' y y' : OD } → < x , y > == < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' ) +prod-eq {x} {x'} {y} {y'} eq = record { proj1 = lemmax ; proj2 = lemmay } where + lemma0 : {x y z : OD } → ( x , x ) == ( z , y ) → x ≡ y + lemma0 {x} {y} eq with trio< (od→ord x) (od→ord y) + lemma0 {x} {y} eq | tri< a ¬b ¬c with eq← eq {od→ord y} (case2 refl) + lemma0 {x} {y} eq | tri< a ¬b ¬c | case1 s = ⊥-elim ( o<¬≡ (sym s) a ) + lemma0 {x} {y} eq | tri< a ¬b ¬c | case2 s = ⊥-elim ( o<¬≡ (sym s) a ) + lemma0 {x} {y} eq | tri≈ ¬a b ¬c = ord≡→≡ b + lemma0 {x} {y} eq | tri> ¬a ¬b c with eq← eq {od→ord y} (case2 refl) + lemma0 {x} {y} eq | tri> ¬a ¬b c | case1 s = ⊥-elim ( o<¬≡ s c ) + lemma0 {x} {y} eq | tri> ¬a ¬b c | case2 s = ⊥-elim ( o<¬≡ s c ) + lemma2 : {x y z : OD } → ( x , x ) == ( z , y ) → z ≡ y + lemma2 {x} {y} {z} eq = trans (sym (lemma0 lemma3 )) ( lemma0 eq ) where + lemma3 : ( x , x ) == ( y , z ) + lemma3 = ==-trans eq exg-pair + lemma1 : {x y : OD } → ( x , x ) == ( y , y ) → x ≡ y + lemma1 {x} {y} eq with eq← eq {od→ord y} (case2 refl) + lemma1 {x} {y} eq | case1 s = ord≡→≡ (sym s) + lemma1 {x} {y} eq | case2 s = ord≡→≡ (sym s) + lemma4 : {x y z : OD } → ( x , y ) == ( x , z ) → y ≡ z + lemma4 {x} {y} {z} eq with eq← eq {od→ord z} (case2 refl) + lemma4 {x} {y} {z} eq | case1 s with ord≡→≡ s -- x ≡ z + ... | refl with lemma2 (==-sym eq ) + ... | refl = refl + lemma4 {x} {y} {z} eq | case2 s = ord≡→≡ (sym s) -- y ≡ z + lemmax : x ≡ x' + lemmax with eq→ eq {od→ord (x , x)} (case1 refl) + lemmax | case1 s = lemma1 (ord→== s ) -- (x,x)≡(x',x') + lemmax | case2 s with lemma2 (ord→== s ) -- (x,x)≡(x',y') with x'≡y' + ... | refl = lemma1 (ord→== s ) + lemmay : y ≡ y' + lemmay with lemmax + ... | refl with lemma4 eq -- with (x,y)≡(x,y') + ... | eq1 = lemma4 (ord→== (cong (λ k → od→ord k ) eq1 )) + +data ord-pair : (p : Ordinal) → Set n where + pair : (x y : Ordinal ) → ord-pair ( od→ord ( < ord→od x , ord→od y > ) ) + +ZFProduct : OD +ZFProduct = record { def = λ x → ord-pair x } + +-- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) +-- eq-pair : { x x' y y' : Ordinal } → x ≡ x' → y ≡ y' → pair x y ≅ pair x' y' +-- eq-pair refl refl = HE.refl + +pi1 : { p : Ordinal } → ord-pair p → Ordinal +pi1 ( pair x y) = x + +π1 : { p : OD } → ZFProduct ∋ p → OD +π1 lt = ord→od (pi1 lt ) + +pi2 : { p : Ordinal } → ord-pair p → Ordinal +pi2 ( pair x y ) = y + +π2 : { p : OD } → ZFProduct ∋ p → OD +π2 lt = ord→od (pi2 lt ) + +op-cons : { ox oy : Ordinal } → ZFProduct ∋ < ord→od ox , ord→od oy > +op-cons {ox} {oy} = pair ox oy + +p-cons : ( x y : OD ) → ZFProduct ∋ < x , y > +p-cons x y = def-subst {_} {_} {ZFProduct} {od→ord (< x , y >)} (pair (od→ord x) ( od→ord y )) refl ( + let open ≡-Reasoning in begin + od→ord < ord→od (od→ord x) , ord→od (od→ord y) > + ≡⟨ cong₂ (λ j k → od→ord < j , k >) oiso oiso ⟩ + od→ord < x , y > + ∎ ) + +op-iso : { op : Ordinal } → (q : ord-pair op ) → od→ord < ord→od (pi1 q) , ord→od (pi2 q) > ≡ op +op-iso (pair ox oy) = refl + +p-iso : { x : OD } → (p : ZFProduct ∋ x ) → < π1 p , π2 p > ≡ x +p-iso {x} p = ord≡→≡ (op-iso p) + +p-pi1 : { x y : OD } → (p : ZFProduct ∋ < x , y > ) → π1 p ≡ x +p-pi1 {x} {y} p = proj1 ( prod-eq ( ord→== (op-iso p) )) + +p-pi2 : { x y : OD } → (p : ZFProduct ∋ < x , y > ) → π2 p ≡ y +p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p))) +