diff OrdUtil.agda @ 423:9984cdd88da3

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 01 Aug 2020 18:05:23 +0900
parents Ordinals.agda@53422a8ea836
children 94392feeebc5
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/OrdUtil.agda	Sat Aug 01 18:05:23 2020 +0900
@@ -0,0 +1,287 @@
+open import Level
+open import Ordinals
+module OrdUtil {n : Level} (O : Ordinals {n} ) where
+
+open import logic
+open import nat
+open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 
+open import Data.Empty
+open import Relation.Binary.PropositionalEquality
+open import Relation.Nullary
+open import Relation.Binary
+
+open Ordinals.Ordinals  O
+open Ordinals.IsOrdinals isOrdinal 
+open Ordinals.IsNext isNext 
+
+o<-dom :   { x y : Ordinal } → x o< y → Ordinal 
+o<-dom  {x} _ = x
+
+o<-cod :   { x y : Ordinal } → x o< y → Ordinal 
+o<-cod  {_} {y} _ = y
+
+o<-subst : {Z X z x : Ordinal }  → Z o< X → Z ≡ z  →  X ≡ x  →  z o< x
+o<-subst df refl refl = df
+
+o<¬≡ :  { ox oy : Ordinal } → ox ≡ oy  → ox o< oy  → ⊥
+o<¬≡ {ox} {oy} eq lt with trio< ox oy
+o<¬≡ {ox} {oy} eq lt | tri< a ¬b ¬c = ¬b eq
+o<¬≡ {ox} {oy} eq lt | tri≈ ¬a b ¬c = ¬a lt
+o<¬≡ {ox} {oy} eq lt | tri> ¬a ¬b c = ¬b eq
+
+o<> :   {x y : Ordinal   }  →  y o< x → x o< y → ⊥
+o<> {ox} {oy} lt tl with trio< ox oy
+o<> {ox} {oy} lt tl | tri< a ¬b ¬c = ¬c lt
+o<> {ox} {oy} lt tl | tri≈ ¬a b ¬c = ¬a tl
+o<> {ox} {oy} lt tl | tri> ¬a ¬b c = ¬a tl
+
+osuc-< :  { x y : Ordinal  } → y o< osuc x  → x o< y → ⊥
+osuc-< {x} {y} y<ox x<y with osuc-≡< y<ox
+osuc-< {x} {y} y<ox x<y | case1 refl = o<¬≡ refl x<y
+osuc-< {x} {y} y<ox x<y | case2 y<x = o<> x<y y<x
+
+osucc :  {ox oy : Ordinal } → oy o< ox  → osuc oy o< osuc ox  
+----   y < osuc y < x < osuc x
+----   y < osuc y = x < osuc x
+----   y < osuc y > x < osuc x   -> y = x ∨ x < y → ⊥
+osucc {ox} {oy} oy<ox with trio< (osuc oy) ox
+osucc {ox} {oy} oy<ox | tri< a ¬b ¬c = ordtrans a <-osuc
+osucc {ox} {oy} oy<ox | tri≈ ¬a refl ¬c = <-osuc
+osucc {ox} {oy} oy<ox | tri> ¬a ¬b c with  osuc-≡< c
+osucc {ox} {oy} oy<ox | tri> ¬a ¬b c | case1 eq = ⊥-elim (o<¬≡ (sym eq) oy<ox)
+osucc {ox} {oy} oy<ox | tri> ¬a ¬b c | case2 lt = ⊥-elim (o<> lt oy<ox)
+
+osucprev :  {ox oy : Ordinal } → osuc oy o< osuc ox  → oy o< ox  
+osucprev {ox} {oy} oy<ox with trio< oy ox
+osucprev {ox} {oy} oy<ox | tri< a ¬b ¬c = a
+osucprev {ox} {oy} oy<ox | tri≈ ¬a b ¬c = ⊥-elim (o<¬≡ (cong (λ k → osuc k) b) oy<ox )
+osucprev {ox} {oy} oy<ox | tri> ¬a ¬b c = ⊥-elim (o<> (osucc c) oy<ox )
+
+open _∧_
+
+osuc2 :  ( x y : Ordinal  ) → ( osuc x o< osuc (osuc y )) ⇔ (x o< osuc y)
+proj2 (osuc2 x y) lt = osucc lt
+proj1 (osuc2 x y) ox<ooy with osuc-≡< ox<ooy
+proj1 (osuc2 x y) ox<ooy | case1 ox=oy = o<-subst <-osuc refl ox=oy
+proj1 (osuc2 x y) ox<ooy | case2 ox<oy = ordtrans <-osuc ox<oy 
+
+_o≤_ :  Ordinal → Ordinal → Set  n
+a o≤ b  = a o< osuc b -- (a ≡ b)  ∨ ( a o< b )
+
+
+xo<ab :  {oa ob : Ordinal } → ( {ox : Ordinal } → ox o< oa  → ox o< ob ) → oa o< osuc ob
+xo<ab   {oa} {ob} a→b with trio< oa ob
+xo<ab   {oa} {ob} a→b | tri< a ¬b ¬c = ordtrans a <-osuc
+xo<ab   {oa} {ob} a→b | tri≈ ¬a refl ¬c = <-osuc
+xo<ab   {oa} {ob} a→b | tri> ¬a ¬b c = ⊥-elim ( o<¬≡ refl (a→b c )  )
+
+maxα :   Ordinal  →  Ordinal  → Ordinal
+maxα x y with trio< x y
+maxα x y | tri< a ¬b ¬c = y
+maxα x y | tri> ¬a ¬b c = x
+maxα x y | tri≈ ¬a refl ¬c = x
+
+omin :    Ordinal  →  Ordinal  → Ordinal
+omin  x y with trio<  x  y
+omin x y | tri< a ¬b ¬c = x
+omin x y | tri> ¬a ¬b c = y
+omin x y | tri≈ ¬a refl ¬c = x
+
+min1 :   {x y z : Ordinal  } → z o< x → z o< y → z o< omin x y
+min1  {x} {y} {z} z<x z<y with trio<  x y
+min1  {x} {y} {z} z<x z<y | tri< a ¬b ¬c = z<x
+min1  {x} {y} {z} z<x z<y | tri≈ ¬a refl ¬c = z<x
+min1  {x} {y} {z} z<x z<y | tri> ¬a ¬b c = z<y
+
+--
+--  max ( osuc x , osuc y )
+--
+
+omax :  ( x y : Ordinal  ) → Ordinal 
+omax  x y with trio< x y
+omax  x y | tri< a ¬b ¬c = osuc y
+omax  x y | tri> ¬a ¬b c = osuc x
+omax  x y | tri≈ ¬a refl ¬c  = osuc x
+
+omax< :  ( x y : Ordinal  ) → x o< y → osuc y ≡ omax x y
+omax<  x y lt with trio< x y
+omax<  x y lt | tri< a ¬b ¬c = refl
+omax<  x y lt | tri≈ ¬a b ¬c = ⊥-elim (¬a lt )
+omax<  x y lt | tri> ¬a ¬b c = ⊥-elim (¬a lt )
+
+omax≤ :  ( x y : Ordinal  ) → x o≤ y → osuc y ≡ omax x y
+omax≤  x y le with trio< x y
+omax≤  x y le | tri< a ¬b ¬c = refl
+omax≤  x y le | tri≈ ¬a refl ¬c = refl
+omax≤  x y le | tri> ¬a ¬b c with osuc-≡< le
+omax≤ x y le | tri> ¬a ¬b c | case1 eq = ⊥-elim (¬b eq)
+omax≤ x y le | tri> ¬a ¬b c | case2 x<y = ⊥-elim (¬a x<y)
+
+omax≡ :  ( x y : Ordinal  ) → x ≡ y → osuc y ≡ omax x y
+omax≡  x y eq with trio< x y
+omax≡  x y eq | tri< a ¬b ¬c = ⊥-elim (¬b eq )
+omax≡  x y eq | tri≈ ¬a refl ¬c = refl
+omax≡  x y eq | tri> ¬a ¬b c = ⊥-elim (¬b eq )
+
+omax-x :  ( x y : Ordinal  ) → x o< omax x y
+omax-x  x y with trio< x y
+omax-x  x y | tri< a ¬b ¬c = ordtrans a <-osuc
+omax-x  x y | tri> ¬a ¬b c = <-osuc
+omax-x  x y | tri≈ ¬a refl ¬c = <-osuc
+
+omax-y :  ( x y : Ordinal  ) → y o< omax x y
+omax-y  x y with  trio< x y
+omax-y  x y | tri< a ¬b ¬c = <-osuc
+omax-y  x y | tri> ¬a ¬b c = ordtrans c <-osuc
+omax-y  x y | tri≈ ¬a refl ¬c = <-osuc
+
+omxx :  ( x : Ordinal  ) → omax x x ≡ osuc x
+omxx  x with  trio< x x
+omxx  x | tri< a ¬b ¬c = ⊥-elim (¬b refl )
+omxx  x | tri> ¬a ¬b c = ⊥-elim (¬b refl )
+omxx  x | tri≈ ¬a refl ¬c = refl
+
+omxxx :  ( x : Ordinal  ) → omax x (omax x x ) ≡ osuc (osuc x)
+omxxx  x = trans ( cong ( λ k → omax x k ) (omxx x )) (sym ( omax< x (osuc x) <-osuc ))
+
+open _∧_
+
+o≤-refl :  { i  j : Ordinal } → i ≡ j → i o≤ j
+o≤-refl {i} {j} eq = subst (λ k → i o< osuc k ) eq <-osuc
+OrdTrans :  Transitive  _o≤_
+OrdTrans a≤b b≤c with osuc-≡< a≤b | osuc-≡< b≤c
+OrdTrans a≤b b≤c | case1 refl | case1 refl = <-osuc
+OrdTrans a≤b b≤c | case1 refl | case2 a≤c = ordtrans a≤c <-osuc
+OrdTrans a≤b b≤c | case2 a≤c | case1 refl = ordtrans a≤c <-osuc
+OrdTrans a≤b b≤c | case2 a<b | case2 b<c = ordtrans (ordtrans a<b  b<c) <-osuc
+
+OrdPreorder :   Preorder n n n
+OrdPreorder  = record { Carrier = Ordinal
+   ; _≈_  = _≡_ 
+   ; _∼_   = _o≤_
+   ; isPreorder   = record {
+        isEquivalence = record { refl = refl  ; sym = sym ; trans = trans }
+        ; reflexive     = o≤-refl
+        ; trans         = OrdTrans 
+     }
+ }
+
+FExists : {m l : Level} → ( ψ : Ordinal  → Set m ) 
+  → {p : Set l} ( P : { y : Ordinal  } →  ψ y → ¬ p )
+  → (exists : ¬ (∀ y → ¬ ( ψ y ) ))
+  → ¬ p
+FExists  {m} {l} ψ {p} P = contra-position ( λ p y ψy → P {y} ψy p ) 
+
+nexto∅ : {x : Ordinal} → o∅ o< next x
+nexto∅ {x} with trio< o∅ x
+nexto∅ {x} | tri< a ¬b ¬c = ordtrans a x<nx
+nexto∅ {x} | tri≈ ¬a b ¬c = subst (λ k → k o< next x) (sym b) x<nx
+nexto∅ {x} | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c )
+
+next< : {x y z : Ordinal} → x o< next z  → y o< next x → y o< next z
+next< {x} {y} {z} x<nz y<nx with trio< y (next z)
+next< {x} {y} {z} x<nz y<nx | tri< a ¬b ¬c = a
+next< {x} {y} {z} x<nz y<nx | tri≈ ¬a b ¬c = ⊥-elim (¬nx<nx x<nz (subst (λ k → k o< next x) b y<nx)
+   (λ w nz=ow → o<¬≡ nz=ow (subst₂ (λ j k → j o< k ) (sym nz=ow) nz=ow (osuc<nx (subst (λ k → w o< k ) (sym nz=ow) <-osuc) ))))
+next< {x} {y} {z} x<nz y<nx | tri> ¬a ¬b c = ⊥-elim (¬nx<nx x<nz (ordtrans c y<nx )
+   (λ w nz=ow → o<¬≡ (sym nz=ow) (osuc<nx (subst (λ k → w o< k ) (sym nz=ow) <-osuc ))))
+
+osuc< : {x y : Ordinal} → osuc x ≡ y → x o< y
+osuc< {x} {y} refl = <-osuc 
+
+nexto=n : {x y : Ordinal} → x o< next (osuc y)  → x o< next y 
+nexto=n {x} {y} x<noy = next< (osuc<nx x<nx) x<noy
+
+nexto≡ : {x : Ordinal} → next x ≡ next (osuc x)  
+nexto≡ {x} with trio< (next x) (next (osuc x) ) 
+--    next x o< next (osuc x ) ->  osuc x o< next x o< next (osuc x) -> next x ≡ osuc z -> z o o< next x -> osuc z o< next x -> next x o< next x
+nexto≡ {x} | tri< a ¬b ¬c = ⊥-elim (¬nx<nx (osuc<nx  x<nx ) a
+   (λ z eq → o<¬≡ (sym eq) (osuc<nx  (osuc< (sym eq)))))
+nexto≡ {x} | tri≈ ¬a b ¬c = b
+--    next (osuc x) o< next x ->  osuc x o< next (osuc x) o< next x -> next (osuc x) ≡ osuc z -> z o o< next (osuc x) ...
+nexto≡ {x} | tri> ¬a ¬b c = ⊥-elim (¬nx<nx (ordtrans <-osuc x<nx) c
+   (λ z eq → o<¬≡ (sym eq) (osuc<nx  (osuc< (sym eq)))))
+
+next-is-limit : {x y : Ordinal} → ¬ (next x ≡ osuc y)
+next-is-limit {x} {y} eq = o<¬≡ (sym eq) (osuc<nx y<nx) where
+    y<nx : y o< next x
+    y<nx = osuc< (sym eq)
+
+omax<next : {x y : Ordinal} → x o< y → omax x y o< next y
+omax<next {x} {y} x<y = subst (λ k → k o< next y ) (omax< _ _ x<y ) (osuc<nx x<nx)
+
+x<ny→≡next : {x y : Ordinal} → x o< y → y o< next x → next x ≡ next y
+x<ny→≡next {x} {y} x<y y<nx with trio< (next x) (next y)    
+x<ny→≡next {x} {y} x<y y<nx | tri< a ¬b ¬c =          -- x < y < next x <  next y ∧ next x = osuc z
+     ⊥-elim ( ¬nx<nx y<nx a (λ z eq →  o<¬≡ (sym eq) (osuc<nx (subst (λ k → z o< k ) (sym eq) <-osuc )))) 
+x<ny→≡next {x} {y} x<y y<nx | tri≈ ¬a b ¬c = b
+x<ny→≡next {x} {y} x<y y<nx | tri> ¬a ¬b c =          -- x < y < next y < next x
+     ⊥-elim ( ¬nx<nx (ordtrans x<y x<nx) c (λ z eq →  o<¬≡ (sym eq) (osuc<nx (subst (λ k → z o< k ) (sym eq) <-osuc )))) 
+
+≤next : {x y : Ordinal} → x o≤ y → next x o≤ next y
+≤next {x} {y} x≤y with trio< (next x) y
+≤next {x} {y} x≤y | tri< a ¬b ¬c = ordtrans a (ordtrans x<nx <-osuc )
+≤next {x} {y} x≤y | tri≈ ¬a refl ¬c = (ordtrans x<nx <-osuc )
+≤next {x} {y} x≤y | tri> ¬a ¬b c with osuc-≡< x≤y
+≤next {x} {y} x≤y | tri> ¬a ¬b c | case1 refl = o≤-refl refl   -- x = y < next x
+≤next {x} {y} x≤y | tri> ¬a ¬b c | case2 x<y = o≤-refl (x<ny→≡next x<y c) -- x ≤ y < next x 
+
+x<ny→≤next : {x y : Ordinal} → x o< next y → next x o≤ next y
+x<ny→≤next {x} {y} x<ny with trio< x y
+x<ny→≤next {x} {y} x<ny | tri< a ¬b ¬c =  ≤next (ordtrans a <-osuc )
+x<ny→≤next {x} {y} x<ny | tri≈ ¬a refl ¬c =  o≤-refl refl
+x<ny→≤next {x} {y} x<ny | tri> ¬a ¬b c = o≤-refl (sym ( x<ny→≡next c x<ny ))
+
+omax<nomax : {x y : Ordinal} → omax x y o< next (omax x y )
+omax<nomax {x} {y} with trio< x y
+omax<nomax {x} {y} | tri< a ¬b ¬c    = subst (λ k → osuc y o< k ) nexto≡ (osuc<nx x<nx )
+omax<nomax {x} {y} | tri≈ ¬a refl ¬c = subst (λ k → osuc x o< k ) nexto≡ (osuc<nx x<nx )
+omax<nomax {x} {y} | tri> ¬a ¬b c    = subst (λ k → osuc x o< k ) nexto≡ (osuc<nx x<nx )
+
+omax<nx : {x y z : Ordinal} → x o< next z → y o< next z → omax x y o< next z
+omax<nx {x} {y} {z} x<nz y<nz with trio< x y
+omax<nx {x} {y} {z} x<nz y<nz | tri< a ¬b ¬c = osuc<nx y<nz
+omax<nx {x} {y} {z} x<nz y<nz | tri≈ ¬a refl ¬c = osuc<nx y<nz
+omax<nx {x} {y} {z} x<nz y<nz | tri> ¬a ¬b c = osuc<nx x<nz
+
+nn<omax : {x nx ny : Ordinal} → x o< next nx → x o< next ny → x o< next (omax nx ny)
+nn<omax {x} {nx} {ny} xnx xny with trio< nx ny
+nn<omax {x} {nx} {ny} xnx xny | tri< a ¬b ¬c = subst (λ k → x o< k ) nexto≡ xny
+nn<omax {x} {nx} {ny} xnx xny | tri≈ ¬a refl ¬c = subst (λ k → x o< k ) nexto≡ xny
+nn<omax {x} {nx} {ny} xnx xny | tri> ¬a ¬b c = subst (λ k → x o< k ) nexto≡ xnx
+
+record OrdinalSubset (maxordinal : Ordinal) : Set (suc n) where
+  field
+    os→ : (x : Ordinal) → x o< maxordinal → Ordinal
+    os← : Ordinal → Ordinal
+    os←limit : (x : Ordinal) → os← x o< maxordinal
+    os-iso← : {x : Ordinal} →  os→  (os← x) (os←limit x) ≡ x
+    os-iso→ : {x : Ordinal} → (lt : x o< maxordinal ) →  os← (os→ x lt) ≡ x
+
+module o≤-Reasoning {n : Level}  (O : Ordinals {n} )  where
+
+    -- open inOrdinal O
+
+    resp-o< : _o<_ Respects₂ _≡_
+    resp-o< =  resp₂ _o<_
+
+    trans1 : {i j k : Ordinal} → i o< j → j o< osuc  k → i o< k
+    trans1 {i} {j} {k} i<j j<ok with osuc-≡< j<ok
+    trans1 {i} {j} {k} i<j j<ok | case1 refl = i<j
+    trans1 {i} {j} {k} i<j j<ok | case2 j<k = ordtrans i<j j<k
+
+    trans2 : {i j k : Ordinal} → i o< osuc j → j o<  k → i o< k
+    trans2 {i} {j} {k} i<oj j<k with osuc-≡< i<oj
+    trans2 {i} {j} {k} i<oj j<k | case1 refl = j<k
+    trans2 {i} {j} {k} i<oj j<k | case2 i<j = ordtrans i<j j<k
+
+    open import Relation.Binary.Reasoning.Base.Triple 
+      (Preorder.isPreorder OrdPreorder) 
+         ordtrans --<-trans
+         (resp₂ _o<_) --(resp₂ _<_)
+         (λ x → ordtrans x <-osuc ) --<⇒≤
+         trans1 --<-transˡ
+         trans2 --<-transʳ
+         public
+         hiding (_≈⟨_⟩_)
+