Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff OrdUtil.agda @ 423:9984cdd88da3
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 01 Aug 2020 18:05:23 +0900 |
parents | Ordinals.agda@53422a8ea836 |
children | 94392feeebc5 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/OrdUtil.agda Sat Aug 01 18:05:23 2020 +0900 @@ -0,0 +1,287 @@ +open import Level +open import Ordinals +module OrdUtil {n : Level} (O : Ordinals {n} ) where + +open import logic +open import nat +open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) +open import Data.Empty +open import Relation.Binary.PropositionalEquality +open import Relation.Nullary +open import Relation.Binary + +open Ordinals.Ordinals O +open Ordinals.IsOrdinals isOrdinal +open Ordinals.IsNext isNext + +o<-dom : { x y : Ordinal } → x o< y → Ordinal +o<-dom {x} _ = x + +o<-cod : { x y : Ordinal } → x o< y → Ordinal +o<-cod {_} {y} _ = y + +o<-subst : {Z X z x : Ordinal } → Z o< X → Z ≡ z → X ≡ x → z o< x +o<-subst df refl refl = df + +o<¬≡ : { ox oy : Ordinal } → ox ≡ oy → ox o< oy → ⊥ +o<¬≡ {ox} {oy} eq lt with trio< ox oy +o<¬≡ {ox} {oy} eq lt | tri< a ¬b ¬c = ¬b eq +o<¬≡ {ox} {oy} eq lt | tri≈ ¬a b ¬c = ¬a lt +o<¬≡ {ox} {oy} eq lt | tri> ¬a ¬b c = ¬b eq + +o<> : {x y : Ordinal } → y o< x → x o< y → ⊥ +o<> {ox} {oy} lt tl with trio< ox oy +o<> {ox} {oy} lt tl | tri< a ¬b ¬c = ¬c lt +o<> {ox} {oy} lt tl | tri≈ ¬a b ¬c = ¬a tl +o<> {ox} {oy} lt tl | tri> ¬a ¬b c = ¬a tl + +osuc-< : { x y : Ordinal } → y o< osuc x → x o< y → ⊥ +osuc-< {x} {y} y<ox x<y with osuc-≡< y<ox +osuc-< {x} {y} y<ox x<y | case1 refl = o<¬≡ refl x<y +osuc-< {x} {y} y<ox x<y | case2 y<x = o<> x<y y<x + +osucc : {ox oy : Ordinal } → oy o< ox → osuc oy o< osuc ox +---- y < osuc y < x < osuc x +---- y < osuc y = x < osuc x +---- y < osuc y > x < osuc x -> y = x ∨ x < y → ⊥ +osucc {ox} {oy} oy<ox with trio< (osuc oy) ox +osucc {ox} {oy} oy<ox | tri< a ¬b ¬c = ordtrans a <-osuc +osucc {ox} {oy} oy<ox | tri≈ ¬a refl ¬c = <-osuc +osucc {ox} {oy} oy<ox | tri> ¬a ¬b c with osuc-≡< c +osucc {ox} {oy} oy<ox | tri> ¬a ¬b c | case1 eq = ⊥-elim (o<¬≡ (sym eq) oy<ox) +osucc {ox} {oy} oy<ox | tri> ¬a ¬b c | case2 lt = ⊥-elim (o<> lt oy<ox) + +osucprev : {ox oy : Ordinal } → osuc oy o< osuc ox → oy o< ox +osucprev {ox} {oy} oy<ox with trio< oy ox +osucprev {ox} {oy} oy<ox | tri< a ¬b ¬c = a +osucprev {ox} {oy} oy<ox | tri≈ ¬a b ¬c = ⊥-elim (o<¬≡ (cong (λ k → osuc k) b) oy<ox ) +osucprev {ox} {oy} oy<ox | tri> ¬a ¬b c = ⊥-elim (o<> (osucc c) oy<ox ) + +open _∧_ + +osuc2 : ( x y : Ordinal ) → ( osuc x o< osuc (osuc y )) ⇔ (x o< osuc y) +proj2 (osuc2 x y) lt = osucc lt +proj1 (osuc2 x y) ox<ooy with osuc-≡< ox<ooy +proj1 (osuc2 x y) ox<ooy | case1 ox=oy = o<-subst <-osuc refl ox=oy +proj1 (osuc2 x y) ox<ooy | case2 ox<oy = ordtrans <-osuc ox<oy + +_o≤_ : Ordinal → Ordinal → Set n +a o≤ b = a o< osuc b -- (a ≡ b) ∨ ( a o< b ) + + +xo<ab : {oa ob : Ordinal } → ( {ox : Ordinal } → ox o< oa → ox o< ob ) → oa o< osuc ob +xo<ab {oa} {ob} a→b with trio< oa ob +xo<ab {oa} {ob} a→b | tri< a ¬b ¬c = ordtrans a <-osuc +xo<ab {oa} {ob} a→b | tri≈ ¬a refl ¬c = <-osuc +xo<ab {oa} {ob} a→b | tri> ¬a ¬b c = ⊥-elim ( o<¬≡ refl (a→b c ) ) + +maxα : Ordinal → Ordinal → Ordinal +maxα x y with trio< x y +maxα x y | tri< a ¬b ¬c = y +maxα x y | tri> ¬a ¬b c = x +maxα x y | tri≈ ¬a refl ¬c = x + +omin : Ordinal → Ordinal → Ordinal +omin x y with trio< x y +omin x y | tri< a ¬b ¬c = x +omin x y | tri> ¬a ¬b c = y +omin x y | tri≈ ¬a refl ¬c = x + +min1 : {x y z : Ordinal } → z o< x → z o< y → z o< omin x y +min1 {x} {y} {z} z<x z<y with trio< x y +min1 {x} {y} {z} z<x z<y | tri< a ¬b ¬c = z<x +min1 {x} {y} {z} z<x z<y | tri≈ ¬a refl ¬c = z<x +min1 {x} {y} {z} z<x z<y | tri> ¬a ¬b c = z<y + +-- +-- max ( osuc x , osuc y ) +-- + +omax : ( x y : Ordinal ) → Ordinal +omax x y with trio< x y +omax x y | tri< a ¬b ¬c = osuc y +omax x y | tri> ¬a ¬b c = osuc x +omax x y | tri≈ ¬a refl ¬c = osuc x + +omax< : ( x y : Ordinal ) → x o< y → osuc y ≡ omax x y +omax< x y lt with trio< x y +omax< x y lt | tri< a ¬b ¬c = refl +omax< x y lt | tri≈ ¬a b ¬c = ⊥-elim (¬a lt ) +omax< x y lt | tri> ¬a ¬b c = ⊥-elim (¬a lt ) + +omax≤ : ( x y : Ordinal ) → x o≤ y → osuc y ≡ omax x y +omax≤ x y le with trio< x y +omax≤ x y le | tri< a ¬b ¬c = refl +omax≤ x y le | tri≈ ¬a refl ¬c = refl +omax≤ x y le | tri> ¬a ¬b c with osuc-≡< le +omax≤ x y le | tri> ¬a ¬b c | case1 eq = ⊥-elim (¬b eq) +omax≤ x y le | tri> ¬a ¬b c | case2 x<y = ⊥-elim (¬a x<y) + +omax≡ : ( x y : Ordinal ) → x ≡ y → osuc y ≡ omax x y +omax≡ x y eq with trio< x y +omax≡ x y eq | tri< a ¬b ¬c = ⊥-elim (¬b eq ) +omax≡ x y eq | tri≈ ¬a refl ¬c = refl +omax≡ x y eq | tri> ¬a ¬b c = ⊥-elim (¬b eq ) + +omax-x : ( x y : Ordinal ) → x o< omax x y +omax-x x y with trio< x y +omax-x x y | tri< a ¬b ¬c = ordtrans a <-osuc +omax-x x y | tri> ¬a ¬b c = <-osuc +omax-x x y | tri≈ ¬a refl ¬c = <-osuc + +omax-y : ( x y : Ordinal ) → y o< omax x y +omax-y x y with trio< x y +omax-y x y | tri< a ¬b ¬c = <-osuc +omax-y x y | tri> ¬a ¬b c = ordtrans c <-osuc +omax-y x y | tri≈ ¬a refl ¬c = <-osuc + +omxx : ( x : Ordinal ) → omax x x ≡ osuc x +omxx x with trio< x x +omxx x | tri< a ¬b ¬c = ⊥-elim (¬b refl ) +omxx x | tri> ¬a ¬b c = ⊥-elim (¬b refl ) +omxx x | tri≈ ¬a refl ¬c = refl + +omxxx : ( x : Ordinal ) → omax x (omax x x ) ≡ osuc (osuc x) +omxxx x = trans ( cong ( λ k → omax x k ) (omxx x )) (sym ( omax< x (osuc x) <-osuc )) + +open _∧_ + +o≤-refl : { i j : Ordinal } → i ≡ j → i o≤ j +o≤-refl {i} {j} eq = subst (λ k → i o< osuc k ) eq <-osuc +OrdTrans : Transitive _o≤_ +OrdTrans a≤b b≤c with osuc-≡< a≤b | osuc-≡< b≤c +OrdTrans a≤b b≤c | case1 refl | case1 refl = <-osuc +OrdTrans a≤b b≤c | case1 refl | case2 a≤c = ordtrans a≤c <-osuc +OrdTrans a≤b b≤c | case2 a≤c | case1 refl = ordtrans a≤c <-osuc +OrdTrans a≤b b≤c | case2 a<b | case2 b<c = ordtrans (ordtrans a<b b<c) <-osuc + +OrdPreorder : Preorder n n n +OrdPreorder = record { Carrier = Ordinal + ; _≈_ = _≡_ + ; _∼_ = _o≤_ + ; isPreorder = record { + isEquivalence = record { refl = refl ; sym = sym ; trans = trans } + ; reflexive = o≤-refl + ; trans = OrdTrans + } + } + +FExists : {m l : Level} → ( ψ : Ordinal → Set m ) + → {p : Set l} ( P : { y : Ordinal } → ψ y → ¬ p ) + → (exists : ¬ (∀ y → ¬ ( ψ y ) )) + → ¬ p +FExists {m} {l} ψ {p} P = contra-position ( λ p y ψy → P {y} ψy p ) + +nexto∅ : {x : Ordinal} → o∅ o< next x +nexto∅ {x} with trio< o∅ x +nexto∅ {x} | tri< a ¬b ¬c = ordtrans a x<nx +nexto∅ {x} | tri≈ ¬a b ¬c = subst (λ k → k o< next x) (sym b) x<nx +nexto∅ {x} | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) + +next< : {x y z : Ordinal} → x o< next z → y o< next x → y o< next z +next< {x} {y} {z} x<nz y<nx with trio< y (next z) +next< {x} {y} {z} x<nz y<nx | tri< a ¬b ¬c = a +next< {x} {y} {z} x<nz y<nx | tri≈ ¬a b ¬c = ⊥-elim (¬nx<nx x<nz (subst (λ k → k o< next x) b y<nx) + (λ w nz=ow → o<¬≡ nz=ow (subst₂ (λ j k → j o< k ) (sym nz=ow) nz=ow (osuc<nx (subst (λ k → w o< k ) (sym nz=ow) <-osuc) )))) +next< {x} {y} {z} x<nz y<nx | tri> ¬a ¬b c = ⊥-elim (¬nx<nx x<nz (ordtrans c y<nx ) + (λ w nz=ow → o<¬≡ (sym nz=ow) (osuc<nx (subst (λ k → w o< k ) (sym nz=ow) <-osuc )))) + +osuc< : {x y : Ordinal} → osuc x ≡ y → x o< y +osuc< {x} {y} refl = <-osuc + +nexto=n : {x y : Ordinal} → x o< next (osuc y) → x o< next y +nexto=n {x} {y} x<noy = next< (osuc<nx x<nx) x<noy + +nexto≡ : {x : Ordinal} → next x ≡ next (osuc x) +nexto≡ {x} with trio< (next x) (next (osuc x) ) +-- next x o< next (osuc x ) -> osuc x o< next x o< next (osuc x) -> next x ≡ osuc z -> z o o< next x -> osuc z o< next x -> next x o< next x +nexto≡ {x} | tri< a ¬b ¬c = ⊥-elim (¬nx<nx (osuc<nx x<nx ) a + (λ z eq → o<¬≡ (sym eq) (osuc<nx (osuc< (sym eq))))) +nexto≡ {x} | tri≈ ¬a b ¬c = b +-- next (osuc x) o< next x -> osuc x o< next (osuc x) o< next x -> next (osuc x) ≡ osuc z -> z o o< next (osuc x) ... +nexto≡ {x} | tri> ¬a ¬b c = ⊥-elim (¬nx<nx (ordtrans <-osuc x<nx) c + (λ z eq → o<¬≡ (sym eq) (osuc<nx (osuc< (sym eq))))) + +next-is-limit : {x y : Ordinal} → ¬ (next x ≡ osuc y) +next-is-limit {x} {y} eq = o<¬≡ (sym eq) (osuc<nx y<nx) where + y<nx : y o< next x + y<nx = osuc< (sym eq) + +omax<next : {x y : Ordinal} → x o< y → omax x y o< next y +omax<next {x} {y} x<y = subst (λ k → k o< next y ) (omax< _ _ x<y ) (osuc<nx x<nx) + +x<ny→≡next : {x y : Ordinal} → x o< y → y o< next x → next x ≡ next y +x<ny→≡next {x} {y} x<y y<nx with trio< (next x) (next y) +x<ny→≡next {x} {y} x<y y<nx | tri< a ¬b ¬c = -- x < y < next x < next y ∧ next x = osuc z + ⊥-elim ( ¬nx<nx y<nx a (λ z eq → o<¬≡ (sym eq) (osuc<nx (subst (λ k → z o< k ) (sym eq) <-osuc )))) +x<ny→≡next {x} {y} x<y y<nx | tri≈ ¬a b ¬c = b +x<ny→≡next {x} {y} x<y y<nx | tri> ¬a ¬b c = -- x < y < next y < next x + ⊥-elim ( ¬nx<nx (ordtrans x<y x<nx) c (λ z eq → o<¬≡ (sym eq) (osuc<nx (subst (λ k → z o< k ) (sym eq) <-osuc )))) + +≤next : {x y : Ordinal} → x o≤ y → next x o≤ next y +≤next {x} {y} x≤y with trio< (next x) y +≤next {x} {y} x≤y | tri< a ¬b ¬c = ordtrans a (ordtrans x<nx <-osuc ) +≤next {x} {y} x≤y | tri≈ ¬a refl ¬c = (ordtrans x<nx <-osuc ) +≤next {x} {y} x≤y | tri> ¬a ¬b c with osuc-≡< x≤y +≤next {x} {y} x≤y | tri> ¬a ¬b c | case1 refl = o≤-refl refl -- x = y < next x +≤next {x} {y} x≤y | tri> ¬a ¬b c | case2 x<y = o≤-refl (x<ny→≡next x<y c) -- x ≤ y < next x + +x<ny→≤next : {x y : Ordinal} → x o< next y → next x o≤ next y +x<ny→≤next {x} {y} x<ny with trio< x y +x<ny→≤next {x} {y} x<ny | tri< a ¬b ¬c = ≤next (ordtrans a <-osuc ) +x<ny→≤next {x} {y} x<ny | tri≈ ¬a refl ¬c = o≤-refl refl +x<ny→≤next {x} {y} x<ny | tri> ¬a ¬b c = o≤-refl (sym ( x<ny→≡next c x<ny )) + +omax<nomax : {x y : Ordinal} → omax x y o< next (omax x y ) +omax<nomax {x} {y} with trio< x y +omax<nomax {x} {y} | tri< a ¬b ¬c = subst (λ k → osuc y o< k ) nexto≡ (osuc<nx x<nx ) +omax<nomax {x} {y} | tri≈ ¬a refl ¬c = subst (λ k → osuc x o< k ) nexto≡ (osuc<nx x<nx ) +omax<nomax {x} {y} | tri> ¬a ¬b c = subst (λ k → osuc x o< k ) nexto≡ (osuc<nx x<nx ) + +omax<nx : {x y z : Ordinal} → x o< next z → y o< next z → omax x y o< next z +omax<nx {x} {y} {z} x<nz y<nz with trio< x y +omax<nx {x} {y} {z} x<nz y<nz | tri< a ¬b ¬c = osuc<nx y<nz +omax<nx {x} {y} {z} x<nz y<nz | tri≈ ¬a refl ¬c = osuc<nx y<nz +omax<nx {x} {y} {z} x<nz y<nz | tri> ¬a ¬b c = osuc<nx x<nz + +nn<omax : {x nx ny : Ordinal} → x o< next nx → x o< next ny → x o< next (omax nx ny) +nn<omax {x} {nx} {ny} xnx xny with trio< nx ny +nn<omax {x} {nx} {ny} xnx xny | tri< a ¬b ¬c = subst (λ k → x o< k ) nexto≡ xny +nn<omax {x} {nx} {ny} xnx xny | tri≈ ¬a refl ¬c = subst (λ k → x o< k ) nexto≡ xny +nn<omax {x} {nx} {ny} xnx xny | tri> ¬a ¬b c = subst (λ k → x o< k ) nexto≡ xnx + +record OrdinalSubset (maxordinal : Ordinal) : Set (suc n) where + field + os→ : (x : Ordinal) → x o< maxordinal → Ordinal + os← : Ordinal → Ordinal + os←limit : (x : Ordinal) → os← x o< maxordinal + os-iso← : {x : Ordinal} → os→ (os← x) (os←limit x) ≡ x + os-iso→ : {x : Ordinal} → (lt : x o< maxordinal ) → os← (os→ x lt) ≡ x + +module o≤-Reasoning {n : Level} (O : Ordinals {n} ) where + + -- open inOrdinal O + + resp-o< : _o<_ Respects₂ _≡_ + resp-o< = resp₂ _o<_ + + trans1 : {i j k : Ordinal} → i o< j → j o< osuc k → i o< k + trans1 {i} {j} {k} i<j j<ok with osuc-≡< j<ok + trans1 {i} {j} {k} i<j j<ok | case1 refl = i<j + trans1 {i} {j} {k} i<j j<ok | case2 j<k = ordtrans i<j j<k + + trans2 : {i j k : Ordinal} → i o< osuc j → j o< k → i o< k + trans2 {i} {j} {k} i<oj j<k with osuc-≡< i<oj + trans2 {i} {j} {k} i<oj j<k | case1 refl = j<k + trans2 {i} {j} {k} i<oj j<k | case2 i<j = ordtrans i<j j<k + + open import Relation.Binary.Reasoning.Base.Triple + (Preorder.isPreorder OrdPreorder) + ordtrans --<-trans + (resp₂ _o<_) --(resp₂ _<_) + (λ x → ordtrans x <-osuc ) --<⇒≤ + trans1 --<-transˡ + trans2 --<-transʳ + public + hiding (_≈⟨_⟩_) +