Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff filter.agda @ 191:9eb6a8691f02
choice function cannot jump between ordinal level
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 28 Jul 2019 14:07:08 +0900 |
parents | 6e778b0a7202 |
children | 0b9645a65542 |
line wrap: on
line diff
--- a/filter.agda Fri Jul 26 21:08:06 2019 +0900 +++ b/filter.agda Sun Jul 28 14:07:08 2019 +0900 @@ -10,6 +10,8 @@ open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality +open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) + record Filter {n : Level} ( P max : OD {suc n} ) : Set (suc (suc n)) where field @@ -24,6 +26,20 @@ dense : {n : Level} → Set (suc (suc n)) dense {n} = { D P p : OD {suc n} } → ({x : OD {suc n}} → P ∋ p → ¬ ( ( q : OD {suc n}) → D ∋ q → od→ord p o< od→ord q )) +record NatFilter {n : Level} ( P : Nat → Set n) : Set (suc n) where + field + GN : Nat → Set n + GN∋1 : GN 0 + GNmax : { p : Nat } → P p → 0 ≤ p + GNless : { p q : Nat } → GN p → P q → q ≤ p → GN q + Gr : ( p q : Nat ) → GN p → GN q → Nat + GNcompat : { p q : Nat } → (gp : GN p) → (gq : GN q ) → ( Gr p q gp gq ≤ p ) ∨ ( Gr p q gp gq ≤ q ) + +record NatDense {n : Level} ( P : Nat → Set n) : Set (suc n) where + field + Gmid : { p : Nat } → P p → Nat + GDense : { D : Nat → Set n } → {x p : Nat } → (pp : P p ) → D (Gmid {p} pp) → Gmid pp ≤ p + open OD.OD -- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) @@ -36,12 +52,9 @@ Hω2 : {n : Level} → OD {suc n} Hω2 {n} = record { def = λ x → {dom : Ordinal {suc n}} → x ≡ od→ord ( Pred ( ord→od dom )) } -_⊆_ : {n : Level} → ( A B : OD {suc n} ) → ∀{ x : OD {suc n} } → Set (suc n) -_⊆_ A B {x} = A ∋ x → B ∋ x - Hω2Filter : {n : Level} → Filter {n} Hω2 od∅ Hω2Filter {n} = record { - _⊇_ = {!!} + _⊇_ = _⊇_ ; G = {!!} ; G∋1 = {!!} ; Gmax = {!!}