Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff ordinal-definable.agda @ 100:a402881cc341
add comment
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 10 Jun 2019 09:50:44 +0900 |
parents | 74330d0cdcbc |
children | c8b79d303867 |
line wrap: on
line diff
--- a/ordinal-definable.agda Mon Jun 10 09:35:14 2019 +0900 +++ b/ordinal-definable.agda Mon Jun 10 09:50:44 2019 +0900 @@ -45,16 +45,19 @@ od∅ : {n : Level} → OD {n} od∅ {n} = record { def = λ _ → Lift n ⊥ } --- OD can be iso to a subset of Ordinal + postulate + -- OD can be iso to a subset of Ordinal ( by means of Godel Set ) od→ord : {n : Level} → OD {n} → Ordinal {n} ord→od : {n : Level} → Ordinal {n} → OD {n} c<→o< : {n : Level} {x y : OD {n} } → def y ( od→ord x ) → od→ord x o< od→ord y o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → def (ord→od y) x oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x + -- supermum as Replacement Axiom sup-o : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} sup-o< : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → ∀ {x : Ordinal {n}} → ψ x o< sup-o ψ + -- a property of supermum required in Power Set Axiom sup-x : {n : Level } → ( Ordinal {n} → Ordinal {n}) → Ordinal {n} sup-lb : {n : Level } → { ψ : Ordinal {n} → Ordinal {n}} → {z : Ordinal {n}} → z o< sup-o ψ → z o< osuc (ψ (sup-x ψ)) -- sup-lb : {n : Level } → ( ψ : Ordinal {n} → Ordinal {n}) → ( ∀ {x : Ordinal {n}} → ψx o< z ) → z o< osuc ( sup-o ψ ) @@ -340,8 +343,14 @@ proj2 (pair A B ) = omax-y {n} (od→ord A) (od→ord B) empty : (x : OD {suc n} ) → ¬ (od∅ ∋ x) empty x () - --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } - --- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) + --- + --- ZFSubset A x = record { def = λ y → def A y ∧ def x y } subset of A + --- Power X = ord→od ( sup-o ( λ x → od→ord ( ZFSubset A (ord→od x )) ) ) Power X is a sup of all subset of A + -- + -- if Power A ∋ t, from a propertiy of minimum sup there is osuc ZFSubset A ∋ t + -- then ZFSubset A ≡ t or ZFSubset A ∋ t. In the former case ZFSubset A ∋ x implies A ∋ x + -- In case of later, ZFSubset A ∋ t and t ∋ x implies ZFSubset A ∋ x by transitivity + -- power→ : (A t : OD) → Power A ∋ t → {x : OD} → t ∋ x → A ∋ x power→ A t P∋t {x} t∋x = proj1 lemma-s where minsup : OD @@ -352,7 +361,10 @@ lemma-s with osuc-≡< ( o<-subst (c<→o< lemma-t ) refl diso ) lemma-s | case1 eq = def-subst ( ==-def-r (o≡→== eq) (subst (λ k → def k (od→ord x)) (sym oiso) t∋x ) ) oiso refl lemma-s | case2 lt = transitive {n} {minsup} {t} {x} (def-subst (o<→c< lt) oiso refl ) t∋x - -- = {!!} -- transitive {!!} t∋x + -- + -- we have t ∋ x → A ∋ x means t is a subset of A, that is ZFSubset A t == t + -- Power A is a sup of ZFSubset A t, so Power A ∋ t + -- power← : (A t : OD) → ({x : OD} → (t ∋ x → A ∋ x)) → Power A ∋ t power← A t t→A = def-subst {suc n} {_} {_} {Power A} {od→ord t} ( o<→c< {suc n} {od→ord (ZFSubset A (ord→od (od→ord t)) )} {sup-o (λ x → od→ord (ZFSubset A (ord→od x)))}