diff src/BAlgbra.agda @ 431:a5f8084b8368

reorganiztion for apkg
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 21 Dec 2020 10:23:37 +0900
parents
children b27d92694ed5
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/BAlgbra.agda	Mon Dec 21 10:23:37 2020 +0900
@@ -0,0 +1,122 @@
+open import Level
+open import Ordinals
+module BAlgbra {n : Level } (O : Ordinals {n})   where
+
+open import zf
+open import logic
+import OrdUtil
+import OD 
+import ODUtil
+import ODC
+
+open import Relation.Nullary
+open import Relation.Binary
+open import Data.Empty
+open import Relation.Binary
+open import Relation.Binary.Core
+open import  Relation.Binary.PropositionalEquality
+open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ; _+_ to _n+_ )  
+
+open inOrdinal O
+open Ordinals.Ordinals  O
+open Ordinals.IsOrdinals isOrdinal
+open Ordinals.IsNext isNext
+open OrdUtil O
+open ODUtil O
+
+open OD O
+open OD.OD
+open ODAxiom odAxiom
+open HOD
+
+open _∧_
+open _∨_
+open Bool
+
+--_∩_ : ( A B : HOD  ) → HOD
+--A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x } ;
+--    odmax = omin (odmax A) (odmax B) ; <odmax = λ y → min1 (<odmax A (proj1 y)) (<odmax B (proj2 y)) }
+
+_∪_ : ( A B : HOD  ) → HOD
+A ∪ B = record { od = record { def = λ x → odef A x ∨ odef B x } ;
+    odmax = omax (odmax A) (odmax B) ; <odmax = lemma } where
+      lemma :  {y : Ordinal} → odef A y ∨ odef B y → y o< omax (odmax A) (odmax B)
+      lemma {y} (case1 a) = ordtrans (<odmax A a) (omax-x _ _)
+      lemma {y} (case2 b) = ordtrans (<odmax B b) (omax-y _ _)
+
+_\_ : ( A B : HOD  ) → HOD
+A \ B = record { od = record { def = λ x → odef A x ∧ ( ¬ ( odef B x ) ) }; odmax = odmax A ; <odmax = λ y → <odmax A (proj1 y) }
+
+∪-Union : { A B : HOD } → Union (A , B) ≡ ( A ∪ B )
+∪-Union {A} {B} = ==→o≡ ( record { eq→ =  lemma1 ; eq← = lemma2 } )  where
+    lemma1 :  {x : Ordinal} → odef (Union (A , B)) x → odef (A ∪ B) x
+    lemma1 {x} lt = lemma3 lt where
+        lemma4 : {y : Ordinal} → odef (A , B) y ∧ odef (* y) x → ¬ (¬ ( odef A x ∨ odef B x) )
+        lemma4 {y} z with proj1 z
+        lemma4 {y} z | case1 refl = double-neg (case1 ( subst (λ k → odef k x ) *iso (proj2 z)) )
+        lemma4 {y} z | case2 refl = double-neg (case2 ( subst (λ k → odef k x ) *iso (proj2 z)) )
+        lemma3 : (((u : Ordinal ) → ¬ odef (A , B) u ∧ odef (* u) x) → ⊥) → odef (A ∪ B) x
+        lemma3 not = ODC.double-neg-eilm O (FExists _ lemma4 not)   -- choice
+    lemma2 :  {x : Ordinal} → odef (A ∪ B) x → odef (Union (A , B)) x
+    lemma2 {x} (case1 A∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( IsZF.union→ isZF (A , B) (* x) A
+        ⟪ case1 refl , d→∋ A A∋x ⟫ )
+    lemma2 {x} (case2 B∋x) = subst (λ k → odef (Union (A , B)) k) &iso ( IsZF.union→ isZF (A , B) (* x) B
+        ⟪ case2 refl , d→∋ B B∋x ⟫ )
+
+∩-Select : { A B : HOD } →  Select A (  λ x → ( A ∋ x ) ∧ ( B ∋ x )  ) ≡ ( A ∩ B )
+∩-Select {A} {B} = ==→o≡ ( record { eq→ =  lemma1 ; eq← = lemma2 } ) where
+    lemma1 : {x : Ordinal} → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x → odef (A ∩ B) x
+    lemma1 {x} lt = ⟪ proj1 lt , subst (λ k → odef B k ) &iso (proj2 (proj2 lt)) ⟫
+    lemma2 : {x : Ordinal} → odef (A ∩ B) x → odef (Select A (λ x₁ → (A ∋ x₁) ∧ (B ∋ x₁))) x
+    lemma2 {x} lt = ⟪ proj1 lt , ⟪ d→∋ A (proj1 lt) , d→∋ B (proj2 lt) ⟫ ⟫
+
+dist-ord : {p q r : HOD } → p ∩ ( q ∪ r ) ≡   ( p ∩ q ) ∪ ( p ∩ r )
+dist-ord {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where
+    lemma1 :  {x : Ordinal} → odef (p ∩ (q ∪ r)) x → odef ((p ∩ q) ∪ (p ∩ r)) x
+    lemma1 {x} lt with proj2 lt
+    lemma1 {x} lt | case1 q∋x = case1 ⟪ proj1 lt , q∋x ⟫ 
+    lemma1 {x} lt | case2 r∋x = case2 ⟪ proj1 lt , r∋x ⟫ 
+    lemma2  : {x : Ordinal} → odef ((p ∩ q) ∪ (p ∩ r)) x → odef (p ∩ (q ∪ r)) x
+    lemma2 {x} (case1 p∩q) = ⟪ proj1 p∩q , case1 (proj2 p∩q ) ⟫ 
+    lemma2 {x} (case2 p∩r) = ⟪ proj1 p∩r , case2 (proj2 p∩r ) ⟫ 
+
+dist-ord2 : {p q r : HOD } → p ∪ ( q ∩ r ) ≡   ( p ∪ q ) ∩ ( p ∪ r )
+dist-ord2 {p} {q} {r} = ==→o≡ ( record { eq→ = lemma1 ; eq← = lemma2 } ) where
+    lemma1 : {x : Ordinal} → odef (p ∪ (q ∩ r)) x → odef ((p ∪ q) ∩ (p ∪ r)) x
+    lemma1 {x} (case1 cp) = ⟪ case1 cp , case1 cp ⟫
+    lemma1 {x} (case2 cqr) = ⟪ case2 (proj1 cqr) , case2 (proj2 cqr) ⟫
+    lemma2 : {x : Ordinal} → odef ((p ∪ q) ∩ (p ∪ r)) x → odef (p ∪ (q ∩ r)) x
+    lemma2 {x} lt with proj1 lt | proj2 lt
+    lemma2 {x} lt | case1 cp | _ = case1 cp
+    lemma2 {x} lt | _ | case1 cp = case1 cp 
+    lemma2 {x} lt | case2 cq | case2 cr = case2 ⟪ cq , cr ⟫ 
+
+record IsBooleanAlgebra ( L : Set n)
+       ( b1 : L )
+       ( b0 : L )
+       ( -_ : L → L  )
+       ( _+_ : L → L → L )
+       ( _x_ : L → L → L ) : Set (suc n) where
+   field
+       +-assoc : {a b c : L } → a + ( b + c ) ≡ (a + b) + c
+       x-assoc : {a b c : L } → a x ( b x c ) ≡ (a x b) x c
+       +-sym : {a b : L } → a + b ≡ b + a
+       -sym : {a b : L } → a x b  ≡ b x a
+       +-aab : {a b : L } → a + ( a x b ) ≡ a
+       x-aab : {a b : L } → a x ( a + b ) ≡ a
+       +-dist : {a b c : L } → a + ( b x c ) ≡ ( a x b ) + ( a x c )
+       x-dist : {a b c : L } → a x ( b + c ) ≡ ( a + b ) x ( a + c )
+       a+0 : {a : L } → a + b0 ≡ a
+       ax1 : {a : L } → a x b1 ≡ a
+       a+-a1 : {a : L } → a + ( - a ) ≡ b1
+       ax-a0 : {a : L } → a x ( - a ) ≡ b0
+
+record BooleanAlgebra ( L : Set n) : Set (suc n) where
+   field
+       b1 : L
+       b0 : L
+       -_ : L → L 
+       _+_ : L → L → L
+       _x_ : L → L → L
+       isBooleanAlgebra : IsBooleanAlgebra L b1 b0 -_ _+_ _x_
+