diff src/ordinal.agda @ 431:a5f8084b8368

reorganiztion for apkg
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 21 Dec 2020 10:23:37 +0900
parents
children b27d92694ed5
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ordinal.agda	Mon Dec 21 10:23:37 2020 +0900
@@ -0,0 +1,282 @@
+open import Level
+module ordinal where
+
+open import logic
+open import nat
+open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 
+open import Data.Empty
+open import Relation.Binary.PropositionalEquality
+open import Relation.Binary.Definitions
+open import Data.Nat.Properties 
+open import Relation.Nullary
+open import Relation.Binary.Core
+
+----
+--
+-- Countable Ordinals
+--
+
+data OrdinalD {n : Level} :  (lv : Nat) → Set n where
+   Φ : (lv : Nat) → OrdinalD  lv
+   OSuc : (lv : Nat) → OrdinalD {n} lv → OrdinalD lv
+
+record Ordinal {n : Level} : Set n where
+   constructor ordinal  
+   field
+     lv : Nat
+     ord : OrdinalD {n} lv
+
+data _d<_ {n : Level} :   {lx ly : Nat} → OrdinalD {n} lx  →  OrdinalD {n} ly  → Set n where
+   Φ<  : {lx : Nat} → {x : OrdinalD {n} lx}  →  Φ lx d< OSuc lx x
+   s<  : {lx : Nat} → {x y : OrdinalD {n} lx}  →  x d< y  → OSuc  lx x d< OSuc  lx y
+
+open Ordinal
+
+_o<_ : {n : Level} ( x y : Ordinal ) → Set n
+_o<_ x y =  (lv x < lv y )  ∨ ( ord x d< ord y )
+
+s<refl : {n : Level } {lx : Nat } { x : OrdinalD {n} lx } → x d< OSuc lx x
+s<refl {n} {lv} {Φ lv}  = Φ<
+s<refl {n} {lv} {OSuc lv x}  = s< s<refl 
+
+trio<> : {n : Level} →  {lx : Nat} {x  : OrdinalD {n} lx } { y : OrdinalD  lx }  →  y d< x → x d< y → ⊥
+trio<>  {n} {lx} {.(OSuc lx _)} {.(OSuc lx _)} (s< s) (s< t) = trio<> s t
+trio<> {n} {lx} {.(OSuc lx _)} {.(Φ lx)} Φ< ()
+
+d<→lv : {n : Level} {x y  : Ordinal {n}}   → ord x d< ord y → lv x ≡ lv y
+d<→lv Φ< = refl
+d<→lv (s< lt) = refl
+
+o∅ : {n : Level} → Ordinal {n}
+o∅  = record { lv = Zero ; ord = Φ Zero }
+
+open import Relation.Binary.HeterogeneousEquality using (_≅_;refl)
+
+ordinal-cong : {n : Level} {x y : Ordinal {n}}  →
+      lv x  ≡ lv y → ord x ≅ ord y →  x ≡ y
+ordinal-cong refl refl = refl
+
+≡→¬d< : {n : Level} →  {lv : Nat} → {x  : OrdinalD {n}  lv }  → x d< x → ⊥
+≡→¬d<  {n} {lx} {OSuc lx y} (s< t) = ≡→¬d< t
+
+trio<≡ : {n : Level} →  {lx : Nat} {x  : OrdinalD {n} lx } { y : OrdinalD  lx }  → x ≡ y  → x d< y → ⊥
+trio<≡ refl = ≡→¬d<
+
+trio>≡ : {n : Level} →  {lx : Nat} {x  : OrdinalD {n} lx } { y : OrdinalD  lx }  → x ≡ y  → y d< x → ⊥
+trio>≡ refl = ≡→¬d<
+
+triOrdd : {n : Level} →  {lx : Nat}   → Trichotomous  _≡_ ( _d<_  {n} {lx} {lx} )
+triOrdd  {_} {lv} (Φ lv) (Φ lv) = tri≈ ≡→¬d< refl ≡→¬d<
+triOrdd  {_} {lv} (Φ lv) (OSuc lv y) = tri< Φ< (λ ()) ( λ lt → trio<> lt Φ< )
+triOrdd  {_} {lv} (OSuc lv x) (Φ lv) = tri> (λ lt → trio<> lt Φ<) (λ ()) Φ<
+triOrdd  {_} {lv} (OSuc lv x) (OSuc lv y) with triOrdd x y
+triOrdd  {_} {lv} (OSuc lv x) (OSuc lv y) | tri< a ¬b ¬c = tri< (s< a) (λ tx=ty → trio<≡ tx=ty (s< a) )  (  λ lt → trio<> lt (s< a) )
+triOrdd  {_} {lv} (OSuc lv x) (OSuc lv x) | tri≈ ¬a refl ¬c = tri≈ ≡→¬d< refl ≡→¬d<
+triOrdd  {_} {lv} (OSuc lv x) (OSuc lv y) | tri> ¬a ¬b c = tri> (  λ lt → trio<> lt (s< c) ) (λ tx=ty → trio>≡ tx=ty (s< c) ) (s< c)
+
+osuc : {n : Level} ( x : Ordinal {n} ) → Ordinal {n}
+osuc record { lv = lx ; ord = ox } = record { lv = lx ; ord = OSuc lx ox }
+
+<-osuc : {n : Level} { x : Ordinal {n} } → x o< osuc x
+<-osuc {n} {record { lv = lx ; ord = Φ .lx }} =  case2 Φ<
+<-osuc {n} {record { lv = lx ; ord = OSuc .lx ox }} = case2 ( s< s<refl )
+
+o<¬≡ : {n : Level } { ox oy : Ordinal {suc n}} → ox ≡ oy  → ox o< oy  → ⊥
+o<¬≡ {_} {ox} {ox} refl (case1 lt) =  =→¬< lt
+o<¬≡ {_} {ox} {ox} refl (case2 (s< lt)) = trio<≡ refl lt
+
+¬x<0 : {n : Level} →  { x  : Ordinal {suc n} } → ¬ ( x o< o∅ {suc n} )
+¬x<0 {n} {x} (case1 ())
+¬x<0 {n} {x} (case2 ())
+
+o<> : {n : Level} →  {x y : Ordinal {n}  }  →  y o< x → x o< y → ⊥
+o<> {n} {x} {y} (case1 x₁) (case1 x₂) = nat-<>  x₁ x₂
+o<> {n} {x} {y} (case1 x₁) (case2 x₂) = nat-≡< (sym (d<→lv x₂)) x₁
+o<> {n} {x} {y} (case2 x₁) (case1 x₂) = nat-≡< (sym (d<→lv x₁)) x₂
+o<> {n} {record { lv = lv₁ ; ord = .(OSuc lv₁ _) }} {record { lv = .lv₁ ; ord = .(Φ lv₁) }} (case2 Φ<) (case2 ())
+o<> {n} {record { lv = lv₁ ; ord = .(OSuc lv₁ _) }} {record { lv = .lv₁ ; ord = .(OSuc lv₁ _) }} (case2 (s< y<x)) (case2 (s< x<y)) = 
+   o<> (case2 y<x) (case2 x<y)
+
+orddtrans : {n : Level} {lx : Nat} {x y z : OrdinalD {n}  lx }   → x d< y → y d< z → x d< z
+orddtrans {_} {lx} {.(Φ lx)} {.(OSuc lx _)} {.(OSuc lx _)} Φ< (s< y<z) = Φ< 
+orddtrans {_} {lx} {.(OSuc lx _)} {.(OSuc lx _)} {.(OSuc lx _)} (s< x<y) (s< y<z) = s< ( orddtrans x<y y<z )
+
+osuc-≡< : {n : Level} { a x : Ordinal {n} } → x o< osuc a  →  (x ≡ a ) ∨ (x o< a)  
+osuc-≡< {n} {a} {x} (case1 lt) = case2 (case1 lt)
+osuc-≡< {n} {record { lv = lv₁ ; ord = Φ .lv₁ }} {record { lv = .lv₁ ; ord = .(Φ lv₁) }} (case2 Φ<) = case1 refl
+osuc-≡< {n} {record { lv = lv₁ ; ord = OSuc .lv₁ ord₁ }} {record { lv = .lv₁ ; ord = .(Φ lv₁) }} (case2 Φ<) = case2 (case2 Φ<)
+osuc-≡< {n} {record { lv = lv₁ ; ord = Φ .lv₁ }} {record { lv = .lv₁ ; ord = .(OSuc lv₁ _) }} (case2 (s< ()))
+osuc-≡< {n} {record { lv = la ; ord = OSuc la oa }} {record { lv = la ; ord = (OSuc la ox) }} (case2 (s< lt)) with
+      osuc-≡< {n} {record { lv = la ; ord = oa }} {record { lv = la ; ord = ox }} (case2 lt )
+... | case1 refl = case1 refl
+... | case2 (case2 x) = case2 (case2( s< x) )
+... | case2 (case1 x) = ⊥-elim (¬a≤a  x) 
+
+osuc-< : {n : Level} { x y : Ordinal {n} } → y o< osuc x  → x o< y → ⊥
+osuc-< {n} {x} {y} y<ox x<y with osuc-≡< y<ox
+osuc-< {n} {x} {x} y<ox (case1 x₁) | case1 refl = ⊥-elim (¬a≤a x₁)
+osuc-< {n} {x} {x} (case1 x₂) (case2 x₁) | case1 refl = ⊥-elim (¬a≤a x₂)
+osuc-< {n} {x} {x} (case2 x₂) (case2 x₁) | case1 refl = ≡→¬d<  x₁
+osuc-< {n} {x} {y} y<ox (case1 x₂) | case2 (case1 x₁) = nat-<> x₂ x₁
+osuc-< {n} {x} {y} y<ox (case1 x₂) | case2 (case2 x₁) = nat-≡< (sym (d<→lv x₁)) x₂
+osuc-< {n} {x} {y} y<ox (case2 x<y) | case2 y<x = o<> (case2 x<y) y<x
+
+
+ordtrans : {n : Level} {x y z : Ordinal {n} }   → x o< y → y o< z → x o< z
+ordtrans {n} {x} {y} {z} (case1 x₁) (case1 x₂) = case1 ( <-trans x₁ x₂ )
+ordtrans {n} {x} {y} {z} (case1 x₁) (case2 x₂) with  d<→lv x₂
+... | refl = case1 x₁
+ordtrans {n} {x} {y} {z} (case2 x₁) (case1 x₂)  with  d<→lv x₁
+... | refl = case1 x₂
+ordtrans {n} {x} {y} {z} (case2 x₁) (case2 x₂) with d<→lv x₁ | d<→lv x₂
+... | refl | refl = case2 ( orddtrans x₁ x₂ )
+
+trio< : {n : Level } → Trichotomous {suc n} _≡_  _o<_ 
+trio< a b with <-cmp (lv a) (lv b)
+trio< a b | tri< a₁ ¬b ¬c = tri< (case1  a₁) (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) lemma1 where
+   lemma1 : ¬ (Suc (lv b) ≤ lv a) ∨ (ord b d< ord a)
+   lemma1 (case1 x) = ¬c x
+   lemma1 (case2 x) = ⊥-elim (nat-≡< (sym ( d<→lv x )) a₁  )
+trio< a b | tri> ¬a ¬b c = tri> lemma1 (λ refl → ¬b (cong ( λ x → lv x ) refl ) ) (case1 c) where
+   lemma1 : ¬ (Suc (lv a) ≤ lv b) ∨ (ord a d< ord b)
+   lemma1 (case1 x) = ¬a x
+   lemma1 (case2 x) = ⊥-elim (nat-≡< (sym ( d<→lv x )) c  )
+trio< a b | tri≈ ¬a refl ¬c with triOrdd ( ord a ) ( ord b )
+trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = tri< (case2 a) (λ refl → ¬b (lemma1 refl )) lemma2 where
+   lemma1 :  (record { lv = _ ; ord = x }) ≡ b →  x ≡ ord b
+   lemma1 refl = refl
+   lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< x)
+   lemma2 (case1 x) = ¬a x
+   lemma2 (case2 x) = trio<> x a
+trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = tri> lemma2 (λ refl → ¬b (lemma1 refl )) (case2 c) where
+   lemma1 :  (record { lv = _ ; ord = x }) ≡ b →  x ≡ ord b
+   lemma1 refl = refl
+   lemma2 : ¬ (Suc (lv b) ≤ lv b) ∨ (x d< ord b)
+   lemma2 (case1 x) = ¬a x
+   lemma2 (case2 x) = trio<> x c
+trio< record { lv = .(lv b) ; ord = x } b | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = tri≈ lemma1 refl lemma1 where
+   lemma1 : ¬ (Suc (lv b) ≤ lv b) ∨ (ord b d< ord b)
+   lemma1 (case1 x) = ¬a x
+   lemma1 (case2 x) = ≡→¬d< x
+
+
+open _∧_
+
+TransFinite : {n m : Level} → { ψ : Ordinal {suc n} → Set m }
+  → ( ∀ (lx : Nat ) → ( (x : Ordinal {suc n} ) → x o< ordinal lx (Φ lx)  → ψ x ) → ψ ( record { lv = lx ; ord = Φ lx } ) )
+  → ( ∀ (lx : Nat ) → (x : OrdinalD lx ) → ( (y : Ordinal {suc n} ) → y o< ordinal lx (OSuc lx x)  → ψ y )   → ψ ( record { lv = lx ; ord = OSuc lx x } ) )
+  →  ∀ (x : Ordinal)  → ψ x
+TransFinite {n} {m} {ψ} caseΦ caseOSuc x = proj1 (TransFinite1 (lv x) (ord x) ) where
+  TransFinite1 : (lx : Nat) (ox : OrdinalD lx ) → ψ (ordinal lx ox) ∧ ( ( (x : Ordinal {suc n} ) → x o< ordinal lx ox  → ψ x ) )
+  TransFinite1 Zero (Φ 0) = ⟪  caseΦ Zero lemma , lemma1 ⟫ where
+      lemma : (x : Ordinal) → x o< ordinal Zero (Φ Zero) → ψ x
+      lemma x (case1 ())
+      lemma x (case2 ())
+      lemma1 : (x : Ordinal) → x o< ordinal Zero (Φ Zero) → ψ x
+      lemma1 x (case1 ())
+      lemma1 x (case2 ())
+  TransFinite1 (Suc lx) (Φ (Suc lx)) = ⟪ caseΦ (Suc lx) (λ x → lemma (lv x) (ord x)) , (λ x → lemma (lv x) (ord x)) ⟫ where
+      lemma0 : (ly : Nat) (oy : OrdinalD ly ) → ordinal ly oy  o< ordinal lx (Φ lx) → ψ (ordinal ly oy)
+      lemma0 ly oy lt = proj2 ( TransFinite1 lx (Φ lx) ) (ordinal ly oy) lt
+      lemma : (ly : Nat) (oy : OrdinalD ly ) → ordinal ly oy  o< ordinal (Suc lx) (Φ (Suc lx)) → ψ (ordinal ly oy)
+      lemma lx1 ox1            (case1 lt) with <-∨ lt
+      lemma lx (Φ lx)          (case1 lt) | case1 refl = proj1 ( TransFinite1 lx (Φ lx) )
+      lemma lx (Φ lx)          (case1 lt) | case2 lt1 = lemma0  lx (Φ lx) (case1 lt1)
+      lemma lx (OSuc lx ox1)   (case1 lt) | case1 refl = caseOSuc lx ox1 lemma2 where
+          lemma2 : (y : Ordinal) → (Suc (lv y) ≤ lx) ∨ (ord y d< OSuc lx ox1) → ψ y
+          lemma2 y lt1 with osuc-≡< lt1
+          lemma2 y lt1 | case1 refl = lemma lx ox1 (case1 a<sa)
+          lemma2 y lt1 | case2 t = proj2 (TransFinite1 lx ox1) y t 
+      lemma lx1 (OSuc lx1 ox1) (case1 lt) | case2 lt1 = caseOSuc lx1 ox1 lemma2 where
+          lemma2 : (y : Ordinal) → (Suc (lv y) ≤ lx1) ∨ (ord y d< OSuc lx1 ox1) → ψ y
+          lemma2 y lt2 with osuc-≡< lt2
+          lemma2 y lt2 | case1 refl = lemma lx1 ox1 (ordtrans lt2 (case1 lt))
+          lemma2 y lt2 | case2 (case1 lt3) = proj2 (TransFinite1 lx (Φ lx)) y (case1 (<-trans lt3 lt1 ))
+          lemma2 y lt2 | case2 (case2 lt3) with d<→lv lt3
+          ... | refl = proj2 (TransFinite1 lx (Φ lx)) y (case1 lt1)
+  TransFinite1 lx (OSuc lx ox)  = ⟪ caseOSuc lx ox lemma , lemma ⟫ where
+      lemma : (y : Ordinal) → y o< ordinal lx (OSuc lx ox) → ψ y
+      lemma y lt with osuc-≡< lt
+      lemma y lt | case1 refl = proj1 ( TransFinite1 lx ox ) 
+      lemma y lt | case2 lt1 = proj2 ( TransFinite1 lx ox ) y lt1
+
+--  record CountableOrdinal {n : Level} : Set (suc (suc n)) where
+--     field
+--         ctl→ : Nat → Ordinal {suc n}
+--         ctl← : Ordinal → Nat
+--         ctl-iso→ : { x : Ordinal } → ctl→ (ctl← x ) ≡ x
+--         ctl-iso← : { x : Nat }  → ctl← (ctl→ x ) ≡ x
+--  
+--  is-C-Ordinal : {n : Level} → CountableOrdinal {n}
+--  is-C-Ordinal {n} = record {
+--         ctl→ = {!!} 
+--      ;  ctl← = λ x → TransFinite {n} (λ lx lt → Zero ) ctl01 x
+--      ;  ctl-iso→ = {!!}
+--      ;  ctl-iso← = {!!}
+--    } where
+--        ctl01 : (lx : Nat) (x : OrdinalD lx) → ((y : Ordinal) → y o< ordinal lx (OSuc lx x) → Nat) → Nat
+--        ctl01 Zero (Φ Zero) prev = Zero 
+--        ctl01 Zero (OSuc Zero x) prev = Suc ( prev (ordinal Zero x) (ordtrans <-osuc <-osuc )) 
+--        ctl01 (Suc lx) (Φ (Suc lx)) prev = Suc ( prev (ordinal lx {!!}) {!!})
+--        ctl01 (Suc lx) (OSuc (Suc lx) x) prev = Suc ( prev (ordinal (Suc lx) x) (ordtrans <-osuc <-osuc ))
+
+open import Ordinals 
+
+C-Ordinal : {n : Level} →  Ordinals {suc n} 
+C-Ordinal {n} = record {
+     Ordinal = Ordinal {suc n}
+   ; o∅ = o∅
+   ; osuc = osuc
+   ; _o<_ = _o<_
+   ; next = next
+   ; isOrdinal = record {
+       ordtrans = ordtrans
+     ; trio< = trio<
+     ; ¬x<0 = ¬x<0 
+     ; <-osuc = <-osuc
+     ; osuc-≡< = osuc-≡<
+     ; TransFinite = TransFinite2
+     ; Oprev-p  = Oprev-p 
+   } ;
+   isNext = record {
+        x<nx = x<nx 
+      ; osuc<nx = λ {x} {y} → osuc<nx {x} {y}
+      ; ¬nx<nx = ¬nx<nx 
+   }
+  } where
+     next : Ordinal {suc n} → Ordinal {suc n}
+     next (ordinal lv ord) = ordinal (Suc lv) (Φ (Suc lv))
+     x<nx :    { y : Ordinal } → (y o< next y )
+     x<nx = case1 a<sa
+     osuc<nx : { x y : Ordinal } → x o< next y → osuc x o< next y 
+     osuc<nx (case1 lt) = case1 lt 
+     ¬nx<nx :  {x y : Ordinal} → y o< x → x o< next y →  ¬ ((z : Ordinal) → ¬ (x ≡ osuc z)) 
+     ¬nx<nx {x} {y} = lemma2 x where
+         lemma2 : (x : Ordinal) → y o< x → x o< next y → ¬ ((z : Ordinal) → ¬ x ≡ osuc z)
+         lemma2 (ordinal Zero (Φ 0)) (case2 ()) (case1 (s≤s z≤n)) not
+         lemma2 (ordinal Zero (OSuc 0 dx)) (case2 Φ<) (case1 (s≤s z≤n)) not = not _ refl
+         lemma2 (ordinal Zero (OSuc 0 dx)) (case2 (s< x)) (case1 (s≤s z≤n)) not = not _ refl
+         lemma2 (ordinal (Suc lx) (OSuc (Suc lx) ox)) y<x (case1 (s≤s (s≤s lt))) not = not _ refl
+         lemma2 (ordinal (Suc lx) (Φ (Suc lx))) (case1 x) (case1 (s≤s (s≤s lt))) not = lemma3 x lt where
+             lemma3 : {n l : Nat} → (Suc (Suc n) ≤ Suc l) → l ≤ n → ⊥
+             lemma3   (s≤s sn≤l) (s≤s l≤n) = lemma3 sn≤l l≤n
+     open Oprev
+     Oprev-p  : (x : Ordinal) → Dec ( Oprev (Ordinal {suc n})  osuc x )
+     Oprev-p  (ordinal lv (Φ lv)) = no (λ not → lemma (oprev not) (oprev=x not) ) where
+          lemma : (x : Ordinal) → osuc x ≡ (ordinal lv (Φ lv)) → ⊥
+          lemma x ()
+     Oprev-p  (ordinal lv (OSuc lv ox)) = yes record { oprev = ordinal lv ox ; oprev=x = refl }
+     ord1 : Set (suc n)
+     ord1 = Ordinal {suc n}
+     TransFinite2 : { ψ : ord1  → Set (suc (suc n)) }
+          → ( (x : ord1)  → ( (y : ord1  ) → y o< x → ψ y ) → ψ x )
+          →  ∀ (x : ord1)  → ψ x
+     TransFinite2 {ψ} lt x = TransFinite {n} {suc (suc n)} {ψ} caseΦ caseOSuc x where
+        caseΦ : (lx : Nat) → ((x₁ : Ordinal) → x₁ o< ordinal lx (Φ lx) → ψ x₁) →
+            ψ (record { lv = lx ; ord = Φ lx })
+        caseΦ lx prev = lt (ordinal lx (Φ lx) ) prev
+        caseOSuc :  (lx : Nat) (x₁ : OrdinalD lx) → ((y : Ordinal) → y o< ordinal lx (OSuc lx x₁) → ψ y) →
+            ψ (record { lv = lx ; ord = OSuc lx x₁ })
+        caseOSuc lx ox prev = lt (ordinal lx (OSuc lx ox)) prev 
+
+